| APA |
Macsim, G., & Mihai, A. (2018). A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry, 11(2), 8-17. https://doi.org/10.36890/iejg.545112
|
|
| AMA |
1.Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11(2):8-17. doi:10.36890/iejg.545112
|
|
| Chicago |
Macsim, Gabriel, and Adela Mihai. 2018. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11 (2): 8-17. https://doi.org/10.36890/iejg.545112.
|
|
| EndNote |
Macsim G, Mihai A (November 1, 2018) A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. International Electronic Journal of Geometry 11 2 8–17.
|
|
| IEEE |
[1]G. Macsim and A. Mihai, “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 8–17, Nov. 2018, doi: 10.36890/iejg.545112.
|
|
| ISNAD |
Macsim, Gabriel - Mihai, Adela. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry 11/2 (November 1, 2018): 8-17. https://doi.org/10.36890/iejg.545112.
|
|
| JAMA |
1.Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. 2018;11:8–17.
|
|
| MLA |
Macsim, Gabriel, and Adela Mihai. “A δ-Invariant for QR-Submanifolds in Quaternion Space Forms”. International Electronic Journal of Geometry, vol. 11, no. 2, Nov. 2018, pp. 8-17, doi:10.36890/iejg.545112.
|
|
| Vancouver |
1.Macsim G, Mihai A. A δ-Invariant for QR-Submanifolds in Quaternion Space Forms. Int. Electron. J. Geom. [Internet]. 2018 Nov. 1;11(2):8-17. Available from: https://izlik.org/JA99WW79UU
|
|