[1] Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and
applications. Kluwer Academic Publishers, Dordrecht, 1996.
[2] Greub, W., Linear Algebra. Springer-Verlag, 1967.
[3] Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993.
4] Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266.
[5] Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in
two-dimensional pseudo-Euclidean space. Adv.Appl. Clifford Algebras, Online First Article (2015),1-24.
[6] Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with
G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560.
[7] Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the
special theory of relativity. Springer- Verlag, New York, 1992.
[8] Ören, I˙., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz
Technical University, 2008.
[9] Ören, I˙., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci.
Technol. Trans. A Sci. (2016),1-22. (in press).
[10] Ören, I˙., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and
its application to Bézier curves. J. Math.
Comput. Sci. 6 (2016), no. 1, 1-21.
[11] Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index
1. Publ.Math..Debrecen 57(2000),no. 1-2, 55-69.
[12] Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad.
136(1897).
[13] Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008.
[14] Weyl, H., The classical groups:Their invariants and representations. Princeton University
Press, Princeton, NJ, 1997.
[1] Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and
applications. Kluwer Academic Publishers, Dordrecht, 1996.
[2] Greub, W., Linear Algebra. Springer-Verlag, 1967.
[3] Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993.
4] Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266.
[5] Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in
two-dimensional pseudo-Euclidean space. Adv.Appl. Clifford Algebras, Online First Article (2015),1-24.
[6] Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with
G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560.
[7] Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the
special theory of relativity. Springer- Verlag, New York, 1992.
[8] Ören, I˙., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz
Technical University, 2008.
[9] Ören, I˙., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci.
Technol. Trans. A Sci. (2016),1-22. (in press).
[10] Ören, I˙., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and
its application to Bézier curves. J. Math.
Comput. Sci. 6 (2016), no. 1, 1-21.
[11] Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index
1. Publ.Math..Debrecen 57(2000),no. 1-2, 55-69.
[12] Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad.
136(1897).
[13] Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008.
[14] Weyl, H., The classical groups:Their invariants and representations. Princeton University
Press, Princeton, NJ, 1997.
Ören, İ. (2016). On Invariants of m-Vector in Lorentzian Geometry. International Electronic Journal of Geometry, 9(1), 38-44. https://doi.org/10.36890/iejg.591885
AMA
Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. Nisan 2016;9(1):38-44. doi:10.36890/iejg.591885
Chicago
Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry 9, sy. 1 (Nisan 2016): 38-44. https://doi.org/10.36890/iejg.591885.
EndNote
Ören İ (01 Nisan 2016) On Invariants of m-Vector in Lorentzian Geometry. International Electronic Journal of Geometry 9 1 38–44.
IEEE
İ. Ören, “On Invariants of m-Vector in Lorentzian Geometry”, Int. Electron. J. Geom., c. 9, sy. 1, ss. 38–44, 2016, doi: 10.36890/iejg.591885.
ISNAD
Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry 9/1 (Nisan 2016), 38-44. https://doi.org/10.36890/iejg.591885.
JAMA
Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. 2016;9:38–44.
MLA
Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry, c. 9, sy. 1, 2016, ss. 38-44, doi:10.36890/iejg.591885.
Vancouver
Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. 2016;9(1):38-44.