Araştırma Makalesi
BibTex RIS Kaynak Göster

THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION

Yıl 2014, Cilt: 7 Sayı: 1, 108 - 125, 30.04.2014
https://doi.org/10.36890/iejg.594500

Öz

Kaynakça

  • [1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris, 266(1968), 146–148.
  • [2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text in Math., 200, Springer, Berlin, 2000.
  • [3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954), 159–190.
  • [4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
  • [5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
  • [6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur- vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
  • [7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, 2000.
  • [8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24 (1972), 19–28.
  • [9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
  • [10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins- lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
  • [11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., 26 (1986), 647–665.
  • [12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Ōtsu, 1986.
  • [13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I. Cuza” Iasi, 30 (1974), 35–53.
  • [14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss., 101, Springer, Berlin, 1959.
  • [15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
  • [16] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501–507.
  • [17] Varga, O.,Über den inneren und induzierten Zusammenhang fu¨r Hyperflächen in Finsler- schen R¨aumen, Publ. Math. Debrecen, 8 (1961), 208–217.
  • [18] Wegener, J.M., Hyperfächen in Finslerschen R¨aumen als Transversalfla¨chen einer Schar von Extremalen, Monatsh. Math. Phys., 44 (1936), 115–130.
Yıl 2014, Cilt: 7 Sayı: 1, 108 - 125, 30.04.2014
https://doi.org/10.36890/iejg.594500

Öz

Kaynakça

  • [1] Akbar–Zadeh, H., Sur les sous-variétés des variétés finsleriennes, C.R. Acad. Sci. Paris, 266(1968), 146–148.
  • [2] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text in Math., 200, Springer, Berlin, 2000.
  • [3] Barthel, W., Über die Minimalflächen in gefaserten Finslerr¨aumen, Ann. di Mat., 36 (1954), 159–190.
  • [4] Bejancu, A., Special immersions of Finsler spaces, Stud. Cercet. Mat., 39 (1987), 463–487.
  • [5] Bejancu, A., Finsler Geometry and Applications, Ellis Horwood, New York, 1990.
  • [6] Bejancu, A. and Farran, H.R., On the classification of Randers manifolds of constant cur- vature, Bull. Math. Soc. Sci. Math. Roumanie, 52 (100), No. 3, 2009, 227–239.
  • [7] Bejancu, A. and Farran, H.R., Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, 2000.
  • [8] Comic, I., The intrinsic curvature tensors of a subspace in a Finsler space, Tensor, N.S., 24 (1972), 19–28.
  • [9] Haimovici, M., Variétés totalement extrémales et variétés totalement géodésiques dans les espaces de Finsler, Ann. Sci. Univ. Jassy, 25 (1939), 559–644.
  • [10] Matsumoto, M., The induced and intrinsic Finsler connections of a hypersurface and Fins- lerian projective geometry, J. Math. Kyoto Univ., 25 (1985), 107–144.
  • [11] Matsumoto, M., Theory of Y -extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., 26 (1986), 647–665.
  • [12] Matsumoto, M., Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Ōtsu, 1986.
  • [13] Miron, R., A non-standard theory of hypersurfaces in Finsler spaces, An. St. Univ. ”Al.I. Cuza” Iasi, 30 (1974), 35–53.
  • [14] Rund, H., The Differential Geometry of Finsler Spaces, Grundlehr. Math. Wiss., 101, Springer, Berlin, 1959.
  • [15] Shen, Z., On Finsler geometry of submanifolds, Math. Ann., 311 (1998), 549–576.
  • [16] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501–507.
  • [17] Varga, O.,Über den inneren und induzierten Zusammenhang fu¨r Hyperflächen in Finsler- schen R¨aumen, Publ. Math. Debrecen, 8 (1961), 208–217.
  • [18] Wegener, J.M., Hyperfächen in Finslerschen R¨aumen als Transversalfla¨chen einer Schar von Extremalen, Monatsh. Math. Phys., 44 (1936), 115–130.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Aurel Bejancu

Hani Reda Farran Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 7 Sayı: 1

Kaynak Göster

APA Bejancu, A., & Farran, H. R. (2014). THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry, 7(1), 108-125. https://doi.org/10.36890/iejg.594500
AMA Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. Nisan 2014;7(1):108-125. doi:10.36890/iejg.594500
Chicago Bejancu, Aurel, ve Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7, sy. 1 (Nisan 2014): 108-25. https://doi.org/10.36890/iejg.594500.
EndNote Bejancu A, Farran HR (01 Nisan 2014) THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. International Electronic Journal of Geometry 7 1 108–125.
IEEE A. Bejancu ve H. R. Farran, “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”, Int. Electron. J. Geom., c. 7, sy. 1, ss. 108–125, 2014, doi: 10.36890/iejg.594500.
ISNAD Bejancu, Aurel - Farran, Hani Reda. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry 7/1 (Nisan 2014), 108-125. https://doi.org/10.36890/iejg.594500.
JAMA Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7:108–125.
MLA Bejancu, Aurel ve Hani Reda Farran. “THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION”. International Electronic Journal of Geometry, c. 7, sy. 1, 2014, ss. 108-25, doi:10.36890/iejg.594500.
Vancouver Bejancu A, Farran HR. THEORY OF FINSLER SUBMANIFOLDS VIA BERWALD CONNECTION. Int. Electron. J. Geom. 2014;7(1):108-25.