Research Article
BibTex RIS Cite

CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE

Year 2013, Volume: 6 Issue: 1, 46 - 55, 30.04.2013

Abstract


References

  • [1] Asil, V. and Bekta¸s, M. On a characterization of helix for curves of the Heisenberg group. Int. Journal of Pure and Applied Mathematics, V 15 No. 4 (2004), 491-495.
  • [2] Balgetir, H., Bekta¸s, M. Ergu¨t, M., On a characterization of null helix. Bull. Ins. Math. Aca.Sin., 29, No. 1 (2001), 71-78.
  • [3] Caddeo, R., Oniciuc, C. and Piu, P. Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino, Vol 62 (3), (2004), 265-277.
  • [4] Chen, B.-Y. and Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
  • [5] Eells, J., Sampson, J.H. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
  • [6] Ekmekçi, N., Hacisalihog˘lu, H.H. On helices of a Lorentzian manifold. Commun. Fac. Sci., Univ. Ank. Series A1 (1996), 45-50.
  • [7] Ekmekçi, N., I˙larslan, K. On characterization of general helices in Lorentzian space. HadronicJ. 23 (2000), no. 6, 677-682.
  • [8] Ekmekci, N. On general helices and pseudo-Riemannian manifolds. Comm. Fac. Sci. Univ. Ankara. Series A1 V. 47. (1998), 45-49.
  • [9] Ikawa, T. On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba J. Math., 9 (1985), 353-371.
  • [10] İlarslan, K. Characterizations of spacelike general helices in Lorentzian manifolds. KragujevacJ. Math. 25 (2003), 209-218.
  • [11] Nakanishi, Y. On helices and pseudo-Riemannian submanifolds. Tsukaba J. Math. 12 (1988), 469-476.
  • [12] Ogrenmis, A. O., Ergut, M. and Bektas, M. On the helices in the Galilean space G3. Iranian Journal of Science and Technology, Transaction A, Vol. 31 (2007).
  • [13] Rahmani, S. Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. Journal of Geometry and Physics 9 (1992), 295-302.
  • [14] Struik, D. J. Lectures on classical differential geometry. Dover, New-York, 1988.
Year 2013, Volume: 6 Issue: 1, 46 - 55, 30.04.2013

Abstract

References

  • [1] Asil, V. and Bekta¸s, M. On a characterization of helix for curves of the Heisenberg group. Int. Journal of Pure and Applied Mathematics, V 15 No. 4 (2004), 491-495.
  • [2] Balgetir, H., Bekta¸s, M. Ergu¨t, M., On a characterization of null helix. Bull. Ins. Math. Aca.Sin., 29, No. 1 (2001), 71-78.
  • [3] Caddeo, R., Oniciuc, C. and Piu, P. Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group. Rend. Sem. Mat. Univ. Politec. Torino, Vol 62 (3), (2004), 265-277.
  • [4] Chen, B.-Y. and Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Mem. Fac. Sci. Kyushu Univ. Ser. A 45 (1991), 323–347.
  • [5] Eells, J., Sampson, J.H. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109-160.
  • [6] Ekmekçi, N., Hacisalihog˘lu, H.H. On helices of a Lorentzian manifold. Commun. Fac. Sci., Univ. Ank. Series A1 (1996), 45-50.
  • [7] Ekmekçi, N., I˙larslan, K. On characterization of general helices in Lorentzian space. HadronicJ. 23 (2000), no. 6, 677-682.
  • [8] Ekmekci, N. On general helices and pseudo-Riemannian manifolds. Comm. Fac. Sci. Univ. Ankara. Series A1 V. 47. (1998), 45-49.
  • [9] Ikawa, T. On curves and submanifolds in an indefinite Riemannian manifold. Tsukuba J. Math., 9 (1985), 353-371.
  • [10] İlarslan, K. Characterizations of spacelike general helices in Lorentzian manifolds. KragujevacJ. Math. 25 (2003), 209-218.
  • [11] Nakanishi, Y. On helices and pseudo-Riemannian submanifolds. Tsukaba J. Math. 12 (1988), 469-476.
  • [12] Ogrenmis, A. O., Ergut, M. and Bektas, M. On the helices in the Galilean space G3. Iranian Journal of Science and Technology, Transaction A, Vol. 31 (2007).
  • [13] Rahmani, S. Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois. Journal of Geometry and Physics 9 (1992), 295-302.
  • [14] Struik, D. J. Lectures on classical differential geometry. Dover, New-York, 1988.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Bendehiba Senoussı This is me

Mohammed Bekkar This is me

Publication Date April 30, 2013
Published in Issue Year 2013 Volume: 6 Issue: 1

Cite

APA Senoussı, B., & Bekkar, M. (2013). CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. International Electronic Journal of Geometry, 6(1), 46-55.
AMA Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. April 2013;6(1):46-55.
Chicago Senoussı, Bendehiba, and Mohammed Bekkar. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry 6, no. 1 (April 2013): 46-55.
EndNote Senoussı B, Bekkar M (April 1, 2013) CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. International Electronic Journal of Geometry 6 1 46–55.
IEEE B. Senoussı and M. Bekkar, “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”, Int. Electron. J. Geom., vol. 6, no. 1, pp. 46–55, 2013.
ISNAD Senoussı, Bendehiba - Bekkar, Mohammed. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry 6/1 (April 2013), 46-55.
JAMA Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. 2013;6:46–55.
MLA Senoussı, Bendehiba and Mohammed Bekkar. “CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE”. International Electronic Journal of Geometry, vol. 6, no. 1, 2013, pp. 46-55.
Vancouver Senoussı B, Bekkar M. CHARACTERIZATION OF GENERAL HELIX IN THE 3 - DIMENSIONAL LORENTZ-HEISENBERG SPACE. Int. Electron. J. Geom. 2013;6(1):46-55.