[1] Brieskorn, E. and Knörrer, H., Plane algebraic curves, Birkhäuser Verlag, Basel, 1986.
[2] Gardner, R. J., Geometric tomography, Encyclopedia of Math. and its Appl. 58, Cambridge
University Press, Cambridge, 2006 (first edition in 1996).
[3] Kincses, J., The determination of a convex set from its angle function, Discrete Comput.
Geom., 30 (2003), 287–297.
[4] Kincses, J. and Kurusa, Á ., Can you recognize the shape of a figure from its shadows?,
Beiträge zur Alg. und Geom., 36 (1995), 25–34.
[5] Kincses, J., An example of a stable, even order Quadrangle which is determined by its angle
function, Discrete Geometry, in honor of W. Kuperberg’s 60th birthday (ed.: A. Bezdek), CRC Press
(Marcel Dekker), New York – Basel, 2003, 367–372.
[6] Kurusa, Á., You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59
(1996), 103–112.
[7] Kurusa, Á., The shadow picture problem for nonintersecting curves, Geom. Dedicata, 59
(1996), 113–125.
[8] Kurusa, Á ., Is a convex plane body determined by an isoptic?, Beiträge Algebra Geom., 53
(2012), 281–294; DOI: 10.1007/s13366-011-0074-2.
[9] Kurusa, Á ., Equioptics of segments: generalizing Apollonius’ theorem, Polygon, 21 (2013),
43–57 (in hungarian: “Szakaszok ekvioptikusai: Apoll´oniosz t´etel´enek ´altala´nos´ıt´asa”).
[11] Pamfilos, P. and Thoma, A., Apollonian cubics: An application of group theory to a problem
in Euclidean geometry, Mathematics Magazine, 72 (1999), 356–366.
[12] Pamfilos, P., Theory of Isoptic cubics, Help file of Isoptikon program that is freely
availableat http://www.math.uoc.gr/∼pamfilos/#iso , 1998.
Year 2013,
Volume: 6 Issue: 1, 56 - 67, 30.04.2013
[1] Brieskorn, E. and Knörrer, H., Plane algebraic curves, Birkhäuser Verlag, Basel, 1986.
[2] Gardner, R. J., Geometric tomography, Encyclopedia of Math. and its Appl. 58, Cambridge
University Press, Cambridge, 2006 (first edition in 1996).
[3] Kincses, J., The determination of a convex set from its angle function, Discrete Comput.
Geom., 30 (2003), 287–297.
[4] Kincses, J. and Kurusa, Á ., Can you recognize the shape of a figure from its shadows?,
Beiträge zur Alg. und Geom., 36 (1995), 25–34.
[5] Kincses, J., An example of a stable, even order Quadrangle which is determined by its angle
function, Discrete Geometry, in honor of W. Kuperberg’s 60th birthday (ed.: A. Bezdek), CRC Press
(Marcel Dekker), New York – Basel, 2003, 367–372.
[6] Kurusa, Á., You can recognize the shape of a figure by its shadows!, Geom. Dedicata, 59
(1996), 103–112.
[7] Kurusa, Á., The shadow picture problem for nonintersecting curves, Geom. Dedicata, 59
(1996), 113–125.
[8] Kurusa, Á ., Is a convex plane body determined by an isoptic?, Beiträge Algebra Geom., 53
(2012), 281–294; DOI: 10.1007/s13366-011-0074-2.
[9] Kurusa, Á ., Equioptics of segments: generalizing Apollonius’ theorem, Polygon, 21 (2013),
43–57 (in hungarian: “Szakaszok ekvioptikusai: Apoll´oniosz t´etel´enek ´altala´nos´ıt´asa”).
[11] Pamfilos, P. and Thoma, A., Apollonian cubics: An application of group theory to a problem
in Euclidean geometry, Mathematics Magazine, 72 (1999), 356–366.
[12] Pamfilos, P., Theory of Isoptic cubics, Help file of Isoptikon program that is freely
availableat http://www.math.uoc.gr/∼pamfilos/#iso , 1998.