Araştırma Makalesi
BibTex RIS Kaynak Göster

CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS

Yıl 2012, Cilt: 5 Sayı: 2, 67 - 78, 30.10.2012

Öz



Kaynakça

  • [1] R. G. Allen and J. R. Hicks, A reconsideration of the theory of value, Pt. II, Economica 1 (1934), 196–219.
  • [2] K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow, Capital-labor substitution and economic efficiency, Rev. Econom. Stat. 43 (1961), 225–250.
  • [3] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, Hackensack, New Jersey, 2011.
  • [4] B.-Y. Chen, On some geometric properties of h-homogeneous production function in micro- economics, Kragujevac J. Math. 35 (2011), 343–357.
  • [5] B.-Y. Chen, On some geometric properties of quasi-sum production models, J. Math. Anal. Appl. 392 (2012), 192–199.
  • [6] B.-Y. Chen, Classification of h-homogeneous production functions with constant elasticity of substitution, Tamkang J. Math. 43 (2012), 321–328.
  • [7] P. H. Douglas, The Cobb-Douglas production function once again: Its history, its testing, and some new empirical values, J. Polit. Econom. 84 (1976), 903–916.
  • [8] J. Filipe and G. Adams, The estimation of the Cobb-Douglas function, Eastern Econom. J. 31 (2005), 427–445.
  • [9] G. Hanoch, CRESH production functions, Econometrica 39 (1971), 695–712.
  • [10] C. W. Cobb and P. H. Douglas, A theory of production, Amer. Econom. Rev. 18 (1928), 139–165.
  • [11] J. R. Hicks, Theory of Wages, London, Macmillan, 1932.
  • [12] L. Losonczi, Production functions having the CES property, Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 26 (2010), 113–125.
  • [13] D. McFadden, Constant elasticity of substitution production functions, The Review of Eco- nomic Studies 30 (1963), 73–83.
  • [14] R. C. Reilly, On the Hessian of a function and the curvature of its graph, Michigan Math. J. 20 (1973), 373–383.
  • [15] A. D. Vˆılcu and G. E. Vˆılcu, On some geometric properties of the generalized CES production functions, Appl. Math. Comput. 218 (2011), 124–129,
  • [16] G. E. Vˆılcu, A geometric perspective on the generalized Cobb-Douglas production functions, Appl. Math. Lett. 24 (2011), 777–783.
Yıl 2012, Cilt: 5 Sayı: 2, 67 - 78, 30.10.2012

Öz

Kaynakça

  • [1] R. G. Allen and J. R. Hicks, A reconsideration of the theory of value, Pt. II, Economica 1 (1934), 196–219.
  • [2] K. J. Arrow, H. B. Chenery, B. S. Minhas and R. M. Solow, Capital-labor substitution and economic efficiency, Rev. Econom. Stat. 43 (1961), 225–250.
  • [3] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific, Hackensack, New Jersey, 2011.
  • [4] B.-Y. Chen, On some geometric properties of h-homogeneous production function in micro- economics, Kragujevac J. Math. 35 (2011), 343–357.
  • [5] B.-Y. Chen, On some geometric properties of quasi-sum production models, J. Math. Anal. Appl. 392 (2012), 192–199.
  • [6] B.-Y. Chen, Classification of h-homogeneous production functions with constant elasticity of substitution, Tamkang J. Math. 43 (2012), 321–328.
  • [7] P. H. Douglas, The Cobb-Douglas production function once again: Its history, its testing, and some new empirical values, J. Polit. Econom. 84 (1976), 903–916.
  • [8] J. Filipe and G. Adams, The estimation of the Cobb-Douglas function, Eastern Econom. J. 31 (2005), 427–445.
  • [9] G. Hanoch, CRESH production functions, Econometrica 39 (1971), 695–712.
  • [10] C. W. Cobb and P. H. Douglas, A theory of production, Amer. Econom. Rev. 18 (1928), 139–165.
  • [11] J. R. Hicks, Theory of Wages, London, Macmillan, 1932.
  • [12] L. Losonczi, Production functions having the CES property, Acta Math. Acad. Paedagog. Nyhzi. (N.S.) 26 (2010), 113–125.
  • [13] D. McFadden, Constant elasticity of substitution production functions, The Review of Eco- nomic Studies 30 (1963), 73–83.
  • [14] R. C. Reilly, On the Hessian of a function and the curvature of its graph, Michigan Math. J. 20 (1973), 373–383.
  • [15] A. D. Vˆılcu and G. E. Vˆılcu, On some geometric properties of the generalized CES production functions, Appl. Math. Comput. 218 (2011), 124–129,
  • [16] G. E. Vˆılcu, A geometric perspective on the generalized Cobb-Douglas production functions, Appl. Math. Lett. 24 (2011), 777–783.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Bang-yen Chen

Yayımlanma Tarihi 30 Ekim 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 5 Sayı: 2

Kaynak Göster

APA Chen, B.-y. (2012). CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS. International Electronic Journal of Geometry, 5(2), 67-78.
AMA Chen By. CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS. Int. Electron. J. Geom. Ekim 2012;5(2):67-78.
Chicago Chen, Bang-yen. “CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS”. International Electronic Journal of Geometry 5, sy. 2 (Ekim 2012): 67-78.
EndNote Chen B-y (01 Ekim 2012) CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS. International Electronic Journal of Geometry 5 2 67–78.
IEEE B.-y. Chen, “CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS”, Int. Electron. J. Geom., c. 5, sy. 2, ss. 67–78, 2012.
ISNAD Chen, Bang-yen. “CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS”. International Electronic Journal of Geometry 5/2 (Ekim 2012), 67-78.
JAMA Chen B-y. CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS. Int. Electron. J. Geom. 2012;5:67–78.
MLA Chen, Bang-yen. “CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS”. International Electronic Journal of Geometry, c. 5, sy. 2, 2012, ss. 67-78.
Vancouver Chen B-y. CLASSIFICATION OF HOMOTHETIC FUNCTIONS WITH CONSTANT ELASTICITY OF SUBSTITUTION AND ITS GEOMETRIC APPLICATIONS. Int. Electron. J. Geom. 2012;5(2):67-78.