Research Article
BibTex RIS Cite

Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind

Year 2010, Volume: 3 Issue: 2, 26 - 39, 30.10.2010

Abstract


References

  • [1] Einstein, A., Bianchi identities in the generalized theory of gravitation, Canad. J. Math., 2, (1950), 120-128.
  • [2] Einstein, A., Die Grundlagen der allgemeinen Relativita¨ts−teorie, Annale der Physic, 49, (1916), 769.
  • [3] Einstein, A., Relativistic theory of the non-symmetic field, Appendix II in the book: The meaning of relativity 5th edit., Princeton, 49, 1955.
  • [4] Einstein, A., Generalization of the relativistic theory of gravitation, Ann. of math., Princeton, 46, (1945), 576-584.
  • [5] Eisenhart, L. P., Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA, 37 (1951), 311–315.
  • [6] Hall, G. S., Lonie, D. P., The principle of equivalence and projective structure in spacetimes, Class. Quantum Grav. 24 (2007), 3617-3636.
  • [7] Hall, G. S., Lonie, D. P., The principle of equivalence and cosmological metrics, J. Math. Phys. 49, 022502 (2008).
  • [8] Hall, G. S., Lonie, D. P., Projective equivalence of Einstein spaces in general relativity, Class. Quantum Grav. 26 (2009) 125009.
  • [9] Mikeˇs, J., Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai, 46. Topics in Diff. Geom., Debrecen (Hungary), (1984), 793–813.
  • [10] Mikeˇs, J., Holomorphically projective mappings and their generalizations, Itogi Nauki i Tekhniky, Ser. Probl. Geom. VINITI, 1988.
  • [11] Mikeˇs, J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. New York, (1996), 311–333.
  • [12] Mikeˇs, J., Kiosak, V., Vanˇzurov´a, A., Geodesic Mappings of Manifolds with Affine Connection, Olomounc, 2008.
  • [13] Mikeˇs, J., Starko, G. A., K-koncircular vector fields and holomorphically projective mappings on Ka¨hlerian spaces, Rend. del Circolo di Palermo, 46, (1997), 123–127.
  • [14] Minˇci´c, S. M., Ricci identities in the space of non-symmetric affine connection, Mat. Vesnik, 10(25), (1973), 161–172.
  • [15] Minˇci´c, S. M., New commutation formulas in the non-symmetric affine connection space, Publ. Inst. Math. (Beograd) (N. S), 22(36), (1977), 189–199.
  • [16] Minˇci´c, S. M., Independent curvature tensors and pseudotensors of spaces with non- symmetric affine connection, Coll. Math. Soc. J´anos Bolyai 31, (1979), 45–460.
  • [17] Minˇci´c, S. M., Stankovi´c, M. S., Velimirovi´c, Lj. S., Generalized K¨ahlerian spaces, Filomat, 15, (2001), 167-174.
  • [18] Minˇci´c, S. M., Zlatanovi´c, M. Lj., New Commutation Formulas for δ-differentation in a Generalized Finsler Space, DGDS, Vol.12, (2010), 145-157.
  • [19] Otsuki, T., Tasiro, Y., On curves in K¨ahlerian spaces, Math. J. Okayama Univ. 4 No 1, (1954), 57–78.
  • [20] Prvanovi´c, M., Holomorphically projective transformations in a locally product Rie- mannian spaces, Math. Balkanica, 1, (1971), 195–213.
  • [21] Prvanovi´c, M., Four curvature tensors of non-symmetric affine connexion (in Rus- sian), Proceedings of the conference ”150 years of Lobachevski geometry”, Kazan’ 1976, Moscow 1997, 199–205.
  • [22] Prvanovi´c, M., A note on holomorphically projective transformations of the Ka¨hler space, Tensor, N. S. Vol. 35, (1981), 99–104.
  • [23] Puˇsi´c, N., On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian manifold, Zbornik radova Fil. fak. Niˇs, s. Matem., 4, (1990), 55–64.
  • [24] Puˇsi´c, N., Charasteristic of some hyperbolic Kahlerian space, Coll. of Sci. papers of the Fac. of Sci. Kragujevac, 16, (1994), 97–104.
  • [25] Puˇsi´c, N., Holomorphically-projecive connections of a hyperbolic K¨ahlerian space, Filo- mat (Niˇs), 9:2, (1995), 187–195.
  • [26] Puˇsi´c, N., On geodesic lines of metric semi-symmetric connection on Riemannian and hyperbolic K¨ahlerian spaces, Novi Sad J. Math., 29, No 3, (1999), 291–299.
  • [27] Radulovich, Zh., Holomorphically-projective mappings of parabolically-K¨ahlerian spaces, Math. Montisnigri, Vol. 8 (1997), 159-184.
  • [28] Sinyukov, N. S.,Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in Russian).
  • [29] Stankovi´c, M. S., Minˇci´c, S. M., Velimirovi´c, Lj. S., On equitorsion Holomorphically projective mappings of generalized K¨ahlerian spaces, Czech. Math. Jour., 54(129), (2004), 701–715.
  • [30] Stankovi´c, M. S. , Zlatanovi´c Lj. M., Velimirovi´c, Lj. S., Equitorsion holomorphically projective mappings of generalized K¨ahlerian space of the first kind, Czechoslovak Mathematical Journal, accepted for publication.
  • [31] Stankovi´c, M. S. , Minˇci´c, S. M., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., On equitor- sion geodesic mappings of general affine connection spaces, Rendiconti del Seminario Matematico Della Universita di Padova, accepted for publication.
  • [32] Stankovi´c, M. S., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., Some relations in the gener- alized K¨ahlerian spaces of the second kind, Filomat 23:2 (2009), 82–89.
  • [33] Yano, K., Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.
  • [34] Yano, K., On complex conformal connections, Kodai Math. Sem. Rep. 26, (1975), 137–151.
  • [35] Zlatanovi´c, M. Lj., Minˇci´c, S. M., Identities for curvature tensors in generalized Finsler space, Filomat 23:2, (2009), 34-42.
Year 2010, Volume: 3 Issue: 2, 26 - 39, 30.10.2010

Abstract

References

  • [1] Einstein, A., Bianchi identities in the generalized theory of gravitation, Canad. J. Math., 2, (1950), 120-128.
  • [2] Einstein, A., Die Grundlagen der allgemeinen Relativita¨ts−teorie, Annale der Physic, 49, (1916), 769.
  • [3] Einstein, A., Relativistic theory of the non-symmetic field, Appendix II in the book: The meaning of relativity 5th edit., Princeton, 49, 1955.
  • [4] Einstein, A., Generalization of the relativistic theory of gravitation, Ann. of math., Princeton, 46, (1945), 576-584.
  • [5] Eisenhart, L. P., Generalized Riemannian spaces I, Proc. Nat. Acad. Sci. USA, 37 (1951), 311–315.
  • [6] Hall, G. S., Lonie, D. P., The principle of equivalence and projective structure in spacetimes, Class. Quantum Grav. 24 (2007), 3617-3636.
  • [7] Hall, G. S., Lonie, D. P., The principle of equivalence and cosmological metrics, J. Math. Phys. 49, 022502 (2008).
  • [8] Hall, G. S., Lonie, D. P., Projective equivalence of Einstein spaces in general relativity, Class. Quantum Grav. 26 (2009) 125009.
  • [9] Mikeˇs, J., Geodesic mappings of special Riemannian spaces, Coll. Math. Soc. J. Bolyai, 46. Topics in Diff. Geom., Debrecen (Hungary), (1984), 793–813.
  • [10] Mikeˇs, J., Holomorphically projective mappings and their generalizations, Itogi Nauki i Tekhniky, Ser. Probl. Geom. VINITI, 1988.
  • [11] Mikeˇs, J., Geodesic mappings of affine-connected and Riemannian spaces, J. Math. Sci. New York, (1996), 311–333.
  • [12] Mikeˇs, J., Kiosak, V., Vanˇzurov´a, A., Geodesic Mappings of Manifolds with Affine Connection, Olomounc, 2008.
  • [13] Mikeˇs, J., Starko, G. A., K-koncircular vector fields and holomorphically projective mappings on Ka¨hlerian spaces, Rend. del Circolo di Palermo, 46, (1997), 123–127.
  • [14] Minˇci´c, S. M., Ricci identities in the space of non-symmetric affine connection, Mat. Vesnik, 10(25), (1973), 161–172.
  • [15] Minˇci´c, S. M., New commutation formulas in the non-symmetric affine connection space, Publ. Inst. Math. (Beograd) (N. S), 22(36), (1977), 189–199.
  • [16] Minˇci´c, S. M., Independent curvature tensors and pseudotensors of spaces with non- symmetric affine connection, Coll. Math. Soc. J´anos Bolyai 31, (1979), 45–460.
  • [17] Minˇci´c, S. M., Stankovi´c, M. S., Velimirovi´c, Lj. S., Generalized K¨ahlerian spaces, Filomat, 15, (2001), 167-174.
  • [18] Minˇci´c, S. M., Zlatanovi´c, M. Lj., New Commutation Formulas for δ-differentation in a Generalized Finsler Space, DGDS, Vol.12, (2010), 145-157.
  • [19] Otsuki, T., Tasiro, Y., On curves in K¨ahlerian spaces, Math. J. Okayama Univ. 4 No 1, (1954), 57–78.
  • [20] Prvanovi´c, M., Holomorphically projective transformations in a locally product Rie- mannian spaces, Math. Balkanica, 1, (1971), 195–213.
  • [21] Prvanovi´c, M., Four curvature tensors of non-symmetric affine connexion (in Rus- sian), Proceedings of the conference ”150 years of Lobachevski geometry”, Kazan’ 1976, Moscow 1997, 199–205.
  • [22] Prvanovi´c, M., A note on holomorphically projective transformations of the Ka¨hler space, Tensor, N. S. Vol. 35, (1981), 99–104.
  • [23] Puˇsi´c, N., On an invariant tensor of a conformal transformation of a hyperbolic Kaehlerian manifold, Zbornik radova Fil. fak. Niˇs, s. Matem., 4, (1990), 55–64.
  • [24] Puˇsi´c, N., Charasteristic of some hyperbolic Kahlerian space, Coll. of Sci. papers of the Fac. of Sci. Kragujevac, 16, (1994), 97–104.
  • [25] Puˇsi´c, N., Holomorphically-projecive connections of a hyperbolic K¨ahlerian space, Filo- mat (Niˇs), 9:2, (1995), 187–195.
  • [26] Puˇsi´c, N., On geodesic lines of metric semi-symmetric connection on Riemannian and hyperbolic K¨ahlerian spaces, Novi Sad J. Math., 29, No 3, (1999), 291–299.
  • [27] Radulovich, Zh., Holomorphically-projective mappings of parabolically-K¨ahlerian spaces, Math. Montisnigri, Vol. 8 (1997), 159-184.
  • [28] Sinyukov, N. S.,Geodesic Mappings of Riemannian Spaces, Nauka, Moscow, 1979 (in Russian).
  • [29] Stankovi´c, M. S., Minˇci´c, S. M., Velimirovi´c, Lj. S., On equitorsion Holomorphically projective mappings of generalized K¨ahlerian spaces, Czech. Math. Jour., 54(129), (2004), 701–715.
  • [30] Stankovi´c, M. S. , Zlatanovi´c Lj. M., Velimirovi´c, Lj. S., Equitorsion holomorphically projective mappings of generalized K¨ahlerian space of the first kind, Czechoslovak Mathematical Journal, accepted for publication.
  • [31] Stankovi´c, M. S. , Minˇci´c, S. M., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., On equitor- sion geodesic mappings of general affine connection spaces, Rendiconti del Seminario Matematico Della Universita di Padova, accepted for publication.
  • [32] Stankovi´c, M. S., Velimirovi´c, Lj. S., Zlatanovi´c Lj. M., Some relations in the gener- alized K¨ahlerian spaces of the second kind, Filomat 23:2 (2009), 82–89.
  • [33] Yano, K., Differential Geometry of Complex and Almost Complex Spaces, Pergamon Press, New York, 1965.
  • [34] Yano, K., On complex conformal connections, Kodai Math. Sem. Rep. 26, (1975), 137–151.
  • [35] Zlatanovi´c, M. Lj., Minˇci´c, S. M., Identities for curvature tensors in generalized Finsler space, Filomat 23:2, (2009), 34-42.
There are 35 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mića S. Stanković This is me

Mlian Lj. Zlatanović This is me

Ljubica S. Velimirović This is me

Publication Date October 30, 2010
Published in Issue Year 2010 Volume: 3 Issue: 2

Cite

APA Stanković, M. S., Zlatanović, M. L., & Velimirović, L. S. (2010). Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. International Electronic Journal of Geometry, 3(2), 26-39.
AMA Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. October 2010;3(2):26-39.
Chicago Stanković, Mića S., Mlian Lj. Zlatanović, and Ljubica S. Velimirović. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry 3, no. 2 (October 2010): 26-39.
EndNote Stanković MS, Zlatanović ML, Velimirović LS (October 1, 2010) Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. International Electronic Journal of Geometry 3 2 26–39.
IEEE M. S. Stanković, M. L. Zlatanović, and L. S. Velimirović, “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”, Int. Electron. J. Geom., vol. 3, no. 2, pp. 26–39, 2010.
ISNAD Stanković, Mića S. et al. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry 3/2 (October 2010), 26-39.
JAMA Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. 2010;3:26–39.
MLA Stanković, Mića S. et al. “Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind”. International Electronic Journal of Geometry, vol. 3, no. 2, 2010, pp. 26-39.
Vancouver Stanković MS, Zlatanović ML, Velimirović LS. Equitorsion Holomorphically Projective Mappings Of Generalized Kählerian Space Of The Second Kind. Int. Electron. J. Geom. 2010;3(2):26-39.