Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2010, Cilt: 3 Sayı: 2, 112 - 117, 30.10.2010

Öz

Kaynakça

  • [1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathe- matical Sciences, Volume 6 (1998), 125-134.
  • [2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differ- ential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.
  • [3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore,(1984).
  • [4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry, (Taipei , 1988) 1-18, World Sci.Publishing, Teaneck , NJ, 1989.
  • [5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in E4 with Harmonic Mean Curvature Vector Field. Math.Nachr.172, (1995), 145-169.
  • [6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point, Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.
  • [7] T. D. Moore , Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159- 168.

Tangentially Cubic Submanifolds Of E^m

Yıl 2010, Cilt: 3 Sayı: 2, 112 - 117, 30.10.2010

Öz


Kaynakça

  • [1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathe- matical Sciences, Volume 6 (1998), 125-134.
  • [2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differ- ential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.
  • [3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore,(1984).
  • [4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry, (Taipei , 1988) 1-18, World Sci.Publishing, Teaneck , NJ, 1989.
  • [5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in E4 with Harmonic Mean Curvature Vector Field. Math.Nachr.172, (1995), 145-169.
  • [6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point, Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.
  • [7] T. D. Moore , Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159- 168.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Günay Öztürk

Bengü (kılıç) Bayram

Kadri Arslan

Yayımlanma Tarihi 30 Ekim 2010
Yayımlandığı Sayı Yıl 2010 Cilt: 3 Sayı: 2

Kaynak Göster

APA Öztürk, G., (kılıç) Bayram, B., & Arslan, K. (2010). Tangentially Cubic Submanifolds Of E^m. International Electronic Journal of Geometry, 3(2), 112-117.
AMA Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. Ekim 2010;3(2):112-117.
Chicago Öztürk, Günay, Bengü (kılıç) Bayram, ve Kadri Arslan. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry 3, sy. 2 (Ekim 2010): 112-17.
EndNote Öztürk G, (kılıç) Bayram B, Arslan K (01 Ekim 2010) Tangentially Cubic Submanifolds Of E^m. International Electronic Journal of Geometry 3 2 112–117.
IEEE G. Öztürk, B. (kılıç) Bayram, ve K. Arslan, “Tangentially Cubic Submanifolds Of E^m”, Int. Electron. J. Geom., c. 3, sy. 2, ss. 112–117, 2010.
ISNAD Öztürk, Günay vd. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry 3/2 (Ekim 2010), 112-117.
JAMA Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. 2010;3:112–117.
MLA Öztürk, Günay vd. “Tangentially Cubic Submanifolds Of E^m”. International Electronic Journal of Geometry, c. 3, sy. 2, 2010, ss. 112-7.
Vancouver Öztürk G, (kılıç) Bayram B, Arslan K. Tangentially Cubic Submanifolds Of E^m. Int. Electron. J. Geom. 2010;3(2):112-7.