[1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom.
(1961), 144-154.
[2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc.
13 (1962), 276-280.
[3] Capursi, M., Some remarks on the product of two almost contact
manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
[4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat.
Pura Appl. 156(1990), 15-36.
[5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
[6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959),
164-167.
[7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
[8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae,
Debrecen, 32 (1985), 187-193.
[9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
[10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which
are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
[11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1
(1978), 197-204.
[12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures
presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
[13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric
submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
[14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod.
Math. Hungar. 52(1) (2006), 101-119.
[17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general
relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol.
57, Teubner, Leipzig, (1983), 324-349.
[18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.
ech., 14 (1965), 1033-1047.
Induced Structures Of The Product Of Riemannian Manifolds
[1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom.
(1961), 144-154.
[2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc.
13 (1962), 276-280.
[3] Capursi, M., Some remarks on the product of two almost contact
manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
[4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat.
Pura Appl. 156(1990), 15-36.
[5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their
linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
[6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959),
164-167.
[7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
[8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae,
Debrecen, 32 (1985), 187-193.
[9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
[10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which
are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
[11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1
(1978), 197-204.
[12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures
presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
[13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric
submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
[14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod.
Math. Hungar. 52(1) (2006), 101-119.
[17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general
relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol.
57, Teubner, Leipzig, (1983), 324-349.
[18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J.
ech., 14 (1965), 1033-1047.
Matamba, T. (2011). Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry, 4(1), 15-25.
AMA
Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. Nisan 2011;4(1):15-25.
Chicago
Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 15-25.
EndNote
Matamba T (01 Nisan 2011) Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry 4 1 15–25.
IEEE
T. Matamba, “Induced Structures Of The Product Of Riemannian Manifolds”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 15–25, 2011.
ISNAD
Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 15-25.
JAMA
Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4:15–25.
MLA
Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 15-25.
Vancouver
Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4(1):15-2.