Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2011, Cilt: 4 Sayı: 1, 15 - 25, 30.04.2011

Öz

Kaynakça

  • [1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom. (1961), 144-154.
  • [2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc. 13 (1962), 276-280.
  • [3] Capursi, M., Some remarks on the product of two almost contact manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
  • [4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat. Pura Appl. 156(1990), 15-36.
  • [5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
  • [6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164-167.
  • [7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
  • [8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • [9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
  • [10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
  • [11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1 (1978), 197-204.
  • [12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
  • [13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
  • [14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod. Math. Hungar. 52(1) (2006), 101-119.
  • [15] Udriste, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
  • [16] Watson, B., Riemannian submersions and instantons, Math. Modelling,1 (1980), 381-393.
  • [17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol. 57, Teubner, Leipzig, (1983), 324-349.
  • [18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. ech., 14 (1965), 1033-1047.

Induced Structures Of The Product Of Riemannian Manifolds

Yıl 2011, Cilt: 4 Sayı: 1, 15 - 25, 30.04.2011

Öz



Kaynakça

  • [1] Boothby, W.M., Homogeneous complex contact manifolds, Proc. Symps. AMS III Diff. Geom. (1961), 144-154.
  • [2] Boothby, W.M., A note on homogeneous complex contact mafifolds,Proc. Amer. Math. Soc. 13 (1962), 276-280.
  • [3] Capursi, M., Some remarks on the product of two almost contact manifolds, An.Sti.Univ.”Al.I.Cuza” Iasi, 30 (1984), 75-79.
  • [4] Chinea, D. and Gonzalez, C.,A classification of almost contact metric manifolds,Ann. Mat. Pura Appl. 156(1990), 15-36.
  • [5] Gray, A. and Hervella, L.M., The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.
  • [6] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc. 10 (1959), 164-167.
  • [7] Kuo, Y.Y., On almost contact 3-structure, Tˆohoku Math.J. 22 (1970), 325-332.
  • [8] Oubina, J.A., New classes of almost contact metric structures, Publicationes Mathematicae, Debrecen, 32 (1985), 187-193.
  • [9] Oubina, J.A., ”A classification for almost contact structures”, Preprint (1985).
  • [10] Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with certain structures which are closely related to almost contact structure II, Tˆohoku Math. J., 13 (1961), 281-294.
  • [11] Shibuya, Y., On the existence of a complex almost contact structure, Kodai. Math. J. 1 (1978), 197-204.
  • [12] Tshikuna-Matamba, T., Quelques classes des vari´et´es m´etriques `a 3-structures presque de contact, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 31(1) (2004), 94-101.
  • [13] Tshikuna-Matamba, T., The differential geometry of almost Hermitian almost contact metric submersions, Int. J. Math. Math. Sci. 36 (2004), 1923-1935.
  • [14] Tshikuna-Matamba, T., Geometric properties of almost contact metric 3−submersions, Pe- riod. Math. Hungar. 52(1) (2006), 101-119.
  • [15] Udriste, C., Structures presque coquaternioniennes, Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969), 487-507.
  • [16] Watson, B., Riemannian submersions and instantons, Math. Modelling,1 (1980), 381-393.
  • [17] Watson, B., G,G’-Riemannian submersions and non-linear gauge field equations of general relativity, in Global Analysis-Analysis in Manifolds, (T.M. Rassias ed.) Teubner-Texte Math, Vol. 57, Teubner, Leipzig, (1983), 324-349.
  • [18] Wolf,J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. ech., 14 (1965), 1033-1047.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

T.tshikuna Matamba Bu kişi benim

Yayımlanma Tarihi 30 Nisan 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 4 Sayı: 1

Kaynak Göster

APA Matamba, T. (2011). Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry, 4(1), 15-25.
AMA Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. Nisan 2011;4(1):15-25.
Chicago Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4, sy. 1 (Nisan 2011): 15-25.
EndNote Matamba T (01 Nisan 2011) Induced Structures Of The Product Of Riemannian Manifolds. International Electronic Journal of Geometry 4 1 15–25.
IEEE T. Matamba, “Induced Structures Of The Product Of Riemannian Manifolds”, Int. Electron. J. Geom., c. 4, sy. 1, ss. 15–25, 2011.
ISNAD Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry 4/1 (Nisan 2011), 15-25.
JAMA Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4:15–25.
MLA Matamba, T.tshikuna. “Induced Structures Of The Product Of Riemannian Manifolds”. International Electronic Journal of Geometry, c. 4, sy. 1, 2011, ss. 15-25.
Vancouver Matamba T. Induced Structures Of The Product Of Riemannian Manifolds. Int. Electron. J. Geom. 2011;4(1):15-2.