Araştırma Makalesi
BibTex RIS Kaynak Göster

Hava aracı kanat yüzeyine köpekbalığı derisinden esinlenen riblet konsepti uygulamasının aerodinamik performans üzerindeki etkisi

Yıl 2025, Cilt: 6 Sayı: 2, 79 - 98, 31.12.2025
https://doi.org/10.55212/ijaa.1736395

Öz

Bu çalışmada, modern havacılıkta artan aerodinamik verimlilik ve sürdürülebilirlik ihtiyacından yola çıkarak, köpekbalığı derisinden ilham alan yüzeyler ve riblet (kaburga yapıları-dişçikler olarak da bilinir) yapılarına ilişkin kapsamlı bir literatür incelemesi gerçekleştirilmiştir. Köpekbalıkları gibi doğal yüzücülerden esinlenen biyomimetik yüzey modifikasyonları, akışkanın aerodinamik yüzeyler etrafındaki davranışını değiştirerek sürüklemeyi azaltmayı hedeflemektedir. Bu yaklaşım, yakıt tüketimini doğrudan etkilemesi nedeniyle, uçak performansını artırmaya yönelik umut verici bir yöntem olarak son yıllarda önemli ölçüde ilgi görmektedir. Literatür incelemesini takiben, riblet uygulamalarının pratik uygulanabilirliğini değerlendirmek amacıyla temsilî bir örnek çalışma sunulmuştur. Elde edilen sonuçlar, riblet yapıların sürükleme kuvvetini önemli ölçüde azaltabileceğini ve dolayısıyla aerodinamik performansı artırabileceğini göstermektedir. Bu tür yüzey işlemleri yalnızca geleneksel uçaklar için değil, aynı zamanda verimlilik ve menzil gibi unsurların kritik olduğu insansız hava araçları, elektrikli hava araçları ve kentsel hava taşımacılığı platformları gibi yeni nesil hava araçları için de büyük potansiyel sunmaktadır. Genel olarak, elde edilen bulgular biyomimetik yüzey tasarımlarının yeni nesil havacılık sistemlerinin geliştirilmesinde etkili bir strateji olabileceğini ortaya koymaktadır.

Kaynakça

  • Anderson, E. J., McGillis, W., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. Journal of Experimental Biology, 204(1), 81–102. https://doi.org/10.1242/jeb.204.1.81
  • Bechert, D. W., & Hage, W. (2006). Drag reduction with riblets in nature and engineering. In C. A. Brebbia (Ed.), Flow phenomena in nature (Vol. 2, pp. 457–504). WIT Press. https://doi.org/10.2495/1-84564-001-4/38
  • Bechert, D. W., Bruse, M., & Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 28(5), 403–412. https://doi.org/10.1007/s003480050395
  • Bechert, D. W., Bruse, M., Hage, W., & Meyer, R. (2000). Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften, 87, 157–171. https://doi.org/10.1007/s001140050696
  • Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T., & Hoppe, G. (1997). Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 338, 59–87. https://doi.org/10.1017/S0022112096004673
  • Bhushan, B. (2009). Biomimetics: Lessons from nature—An overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445–1486. https://doi.org/10.1098/rsta.2009.0011
  • Bixler, G. D., & Bhushan, B. (2013). Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Advanced Functional Materials, 23(36), 4507–4528. https://doi.org/10.1002/adfm.201203783
  • Bhushan, B. (2017). Nanotribology and nanomechanics: An introduction (4th ed., pp. 1–928). Springer. https://doi.org/10.1007/978-3-319-51433-8
  • Bushnell, D. M., & Hefner, J. N. (1990). Viscous drag reduction in boundary layers. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.866401
  • Coles, D., & Wadcock, A. J. (1978). Flying-hot-wire study of 2-dimensional mean flow past an NACA 4412 airfoil at maximum lift. In 11th Fluid and Plasma Dynamics Conference, Seattle, WA. AIAA. https://doi.org/10.2514/6.1978-1169
  • Choi, K. S. (1984). A survey of the turbulent drag reduction using passive devices. Scientific and Technical Information Network (STIN), 85, 20268
  • Choi, K. S. (1988). The wall-pressure fluctuations of modified turbulent boundary layer with riblets. In H. Görtler & W. Tollmien (Eds.), Proceedings of the IUTAM Symposium on the Structure of Turbulence and Drag Reduction (pp. 251–266). Springer. https://doi.org/10.1007/978-3-642-73735-7_27
  • Choi, K. (1989). Near-wall structure of a turbulent boundary layer with riblets. Journal of Fluid Mechanics, 208, 417–458. https://doi.org/10.1017/S0022112089002870
  • Choi, H., Moin, P., & Kim, J. (1993). Direct numerical simulation of turbulent flow over riblets. Journal of Fluid Mechanics, 255, 503–539. https://doi.org/10.1017/S0022112093002563
  • Choi, K. S. (2013). Smart flow control with riblets. Advanced Materials Research, 745, 27–40. https://doi.org/10.4028/www.scientific.net/AMR.745.27
  • Chu, D., & Karniadakis, G. E. (1993). A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. Journal of Fluid Mechanics, 250, 1–42. https://doi.org/10.1017/S0022112093000915
  • Dean, B., & Bhushan, B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), 4775–4806. https://doi.org/10.1098/rsta.2010.0201
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of the Royal Society Interface, 15, 20170828. https://doi.org/10.1098/rsif.2017.0828
  • Feld, K., Kolborg, A. N., Nyborg, C. M., Salewski, M., Steffensen, J. F., & Berg-Sørensen, K. (2019). Dermal denticles of three slowly swimming shark species: Microscopy and flow visualization. Biomimetics, 4(3), 38. https://doi.org/10.3390/biomimetics4030038
  • Fu, Y. F., Yuan, C. Q., & Bai, X. Q. (2017). Marine drag reduction of shark skin inspired riblet surfaces. Biosurface and Biotribology, 3(1), 11–24. https://doi.org/10.1016/j.bsbt.2017.02.001
  • García-Mayoral, R., & Jiménez, J. (2011). Hydrodynamic stability and breakdown of the viscous regime over riblets. Journal of Fluid Mechanics, 678, 317–347. https://doi.org/10.1017/jfm.2011.119
  • Grüneberger, R., & Hage, W. (2011). Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings. Experiments in Fluids, 50(2), 363–373. https://doi.org/10.1007/s00348-010-0926-5
  • Hage, W., Bechert, D. W., & Bruse, M. (2001). Yaw angle effects on optimized riblets. In R. H. J. Sellars (Ed.), Aerodynamic drag reduction technologies (pp. 278–285). Springer. https://doi.org/10.1007/978-3-642-56684-6_32
  • He, Z., Lu, Z., & Sun, Y. (2023). Principles and examples of drag reduction in civil airliners. Applied and Computational Engineering, 28(1), 80–91. https://doi.org/10.54254/2755-2721/28/20230131
  • Hwang, J., Jeong, Y., Park, J. M., Lee, K. H., Hong, J. W., & Choi, J. (2015). Biomimetics: Forecasting the future of science, engineering, and medicine. International Journal of Nanomedicine, 10, 5701–5713. https://doi.org/10.2147/IJN.S83665
  • Jung, Y. C., & Bhushan, B. (2010). Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter, 22, 035104. https://doi.org/10.1088/0953-8984/22/3/035104
  • Jo, S., Ahn, S., Lee, H., Jung, C. M., Song, S., & Kim, D. R. (2018). Water-repellent hybrid nanowire and micro-scale denticle structures on flexible substrates of effective air retention. Scientific Reports, 8, 16631. https://doi.org/10.1038/s41598-018-34841-3
  • Jiakun, H., Zhe, H., Fangbao, T., & Gang, C. (2021). Review on bio-inspired flight systems and bionic aerodynamics. Chinese Journal of Aeronautics, 34, 170–186. https://doi.org/10.1016/j.cja.2020.07.026
  • Karniadakis, G. E., & Choi, K. S. (2003). Mechanisms on transverse motions in turbulent wall flows. Annual Review of Fluid Mechanics, 35, 45–62. https://doi.org/10.1146/annurev.fluid.35.101101.161317
  • Kurita, M., Nishizawa, A., Kwak, D., Iijima, H., Iijima, Y., Takahashi, H., Sasamori, M., Abe, H., Koga, S., & Nakakita, K. (2018). Flight test of a paint-riblet for reducing skin-friction. In Applied Aerodynamics Conference, Atlanta, GA. AIAA. https://doi.org/10.2514/6.2018-3256
  • Lang, A. W., Motta, P., Hidalgo, P., & Westcott, M. (2008). Bristled shark skin: A microgeometry for boundary layer control. Bioinspiration & Biomimetics, 3(4), 046005. https://doi.org/10.1088/1748-3182/3/4/046005
  • Lauder, G. V., Wainwright, D. K., Domel, A. G., Weaver, J. C., Wen, L., & Bertoldi, K. (2016). Structure, biomimetics, and fluid dynamics of fish skin surfaces. Physical Review Fluids, 1, 11044. https://doi.org/10.1103/PhysRevFluids.1.11044
  • Lin, J. C. (2002). Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4–5), 389–420. https://doi.org/10.1016/S0376-0421(02)00010-6
  • Lin, J. (1999). Control of turbulent boundary-layer separation using micro-vortex generators. In 30th Fluid Dynamics Conference, Reston, VA. AIAA. https://doi.org/10.2514/6.1999-3404.
  • Lin, J. C., Robinson, S. K., McGhee, R. J., & Valarezo, W. O. (1994). Separation control on high-lift airfoils via micro-vortex generators. Journal of Aircraft, 31(6), 1317–1323. https://doi.org/10.2514/3.46627
  • Lufthansa Technik. (2025, January 28). The AeroSHARK effect. https://www.lufthansa-technik.com/en/aeroshark
  • Martin, S., & Bhushan, B. (2016). Modeling and optimization of shark-inspired riblet geometries for low drag applications. Journal of Colloid and Interface Science, 474, 206–215. https://doi.org/10.1016/j.jcis.2016.04.033
  • Mele, B. (2022). Riblet drag reduction modeling and simulation. Fluids, 7(6), 249. https://doi.org/10.3390/fluids7060249
  • Mele, B., Tognaccini, R., & Catalano, P. (2016). Performance assessment of a transonic wing–body configuration with riblets installed. Journal of Aircraft, 53(1), 129–140. https://doi.org/10.2514/1.C033194
  • Muhammad, C., & Chong, T. P. (2022). Mitigation of turbulent noise sources by riblets. Journal of Sound and Vibration, 541, 117302. https://doi.org/10.1016/j.jsv.2022.117302
  • Neumann, D., & Dinkelacker, A. (1991). Drag measurements on V-grooved surfaces on a body of revolution in axial flow. Applied Scientific Research, 48, 105–114. https://doi.org/10.1007/BF00382635
  • Nieuwstadt, F. T. M., Wolthers, W., Leijdens, H., Krishna, P. K., & Schwarz-van, M. A. (1993). The reduction of skin friction by riblets under the influence of an adverse pressure gradient. Experiments in Fluids, 15, 17–26. https://doi.org/10.1007/BF00193857
  • Oeffner, J., & Lauder, G. V. (2012). The hydrodynamic function of shark skin and two biomimetic applications. Journal of Experimental Biology, 215(5), 785–795. https://doi.org/10.1242/jeb.063040
  • Park, S. R., & Wallace, J. M. (1994). Flow alteration and drag reduction by riblets in a turbulent boundary layer. AIAA Journal, 32(1), 31–38. https://doi.org/10.2514/3.11939
  • Pfingsten, K. C. (2021, November 29). The AeroSHARK story. LinkedIn. https://www.linkedin.com/pulse/aeroshark-story-part-i-dr-kai-christoph-pfingsten
  • Rastegari, A., & Akhavan, R. (2018). The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. Journal of Fluid Mechanics, 838, 68–104. https://doi.org/10.1017/jfm.2017.848
  • Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London. A, 186, 123–164. https://doi.org/10.1098/rsta.1895.0004
  • Robinson, S. K. (1991). The kinematics of turbulent boundary layer structure (NASA Technical Memorandum 103859). NASA Ames Research Center.
  • Saravi, S. S., & Cheng, K. (2013). A review of drag reduction by riblets and micro-textures in turbulent boundary layers. European Scientific Journal, 9(12), 62–81.
  • Sareen, A., Deters, R. W., Henry, S. P., & Selig, M. S. (2014). Drag reduction using riblet film applied to airfoils for wind turbines. Journal of Solar Energy Engineering, 136, 021007. https://doi.org/10.1115/1.4025759
  • Sasamori, M., Koga, S., & Kurita, M. (2022). Pressure gradient effects on the performance of riblets installed on aircraft surfaces. Journal of Aircraft, 59(2), 447–457. https://doi.org/10.2514/1.C036046
  • Schian, M. R., Rocha, J., & Li, L. (2023). Advances in riblets design. Applied Sciences, 13, 10893. https://doi.org/10.3390/app131910893.
  • Schultz, W. W., & Webb, P. W. (2002). Power requirements for swimming: Do new methods resolve old questions? Integrative and Comparative Biology, 42(5), 1018–1025. https://doi.org/10.1093/icb/42.5.1018
  • Shi, L., Zhang, C. C., Wang, J., Wang, Y. H., Zhang, X. P., & Ren, L. Q. (2011). Reduction of aerodynamic noise from NACA 0018 airfoil model using bionic methods. Journal of Jilin University (Engineering and Technology Edition), 41, 1664–1668.
  • Stenzel, V., Wilke, Y., & Hage, W. (2011). Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Progress in Organic Coatings, 70(4), 224–229. https://doi.org/10.1016/j.porgcoat.2010.10.009
  • Szodruch, J. (1991). Viscous drag reduction on transport aircraft. In 29th Aerospace Sciences Meeting, Reno, NV. AIAA. https://doi.org/10.2514/6.1991-70
  • Suzuki, Y., & Kasagi, N. (1994). Turbulent drag reduction mechanism above a riblet surface. AIAA Journal, 32(9), 1781–1790. https://doi.org/10.2514/3.12103
  • Takahashi, H., Kurita, M., Iijima, H., & Koga, S. (2023). Time-series-data interpolation applied to boundary-layer profiles measured on different flights. Aerospace, 10, 322. https://doi.org/10.3390/aerospace10040322
  • Tanürün, H. E., Akın, A. G., Acır, A., & Şahin, İ. (2024). Experimental and numerical investigation of roughness structure in wind turbine airfoil at low Reynolds number. International Journal of Thermodynamics, 27(3), 26–36. https://doi.org/10.5541/ijot.1338350
  • Tytell, E. D., Borazjani, I., Sotiropoulos, F., Baker, T. V., Anderson, E. J., & Lauder, G. V. (2010). Disentangling the functional roles of morphology and motion in the swimming of fish. Integrative and Comparative Biology, 50(6), 1140–1154. https://doi.org/10.1093/icb/icq057
  • Tytell, E. D. (2007). Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies. Experiments in Fluids, 43(5), 701–712. https://doi.org/10.1007/s00348-007-0288-y
  • Walsh, M. J. (1980). Drag characteristics of V-groove and transverse curvature riblets. In Viscous flow drag reduction (pp. 168–184). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/5.9781600865466.0168.0184
  • Walsh, M. J. (1982). Turbulent boundary layer drag reduction using riblets. In Proceedings of the 20th Aerospace Sciences Meeting (pp. 1–12). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1982-169
  • Walsh, M. J. (1983). Riblets as a viscous drag reduction technique. AIAA Journal, 21(4), 485–486. https://doi.org/10.2514/3.60199
  • Walsh, M. J., & Lindemann, A. M. (1984, January). Optimization and application of riblets for turbulent drag reduction. In Proceedings of the 22nd Aerospace Sciences Meeting (pp. 1–12). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1984-345
  • Walsh, M. J., Sellers, W. L., & McGinley, C. B. (1988). Riblet drag at flight conditions. Journal of Aircraft, 26(6), 570–575. https://doi.org/10.2514/3.45687
  • Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. Journal of Experimental Biology, 217, 1656–1666. https://doi.org/10.1242/jeb.097097
  • Xiao, G., He, Y., Huang, Y., & Li, Q. (2019). Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding. IEEE Access, 7, 107635–107647. https://doi.org/10.1109/ACCESS.2019.2933253
  • Yang, X., Wang, J., Jiang, B. Z., & Xiao, Q. (2021). Numerical study of effect of sawtooth riblets on low-Reynolds-number airfoil flow characteristic and aerodynamic performance. Processes, 9, 2102. https://doi.org/10.3390/pr9122102
  • Zhang, Y., Meng, W., Fan, B., & Tang, W. (2016). Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar. SpringerPlus, 5, 1221. https://doi.org/10.1186/s40064-016-2857-2

The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance

Yıl 2025, Cilt: 6 Sayı: 2, 79 - 98, 31.12.2025
https://doi.org/10.55212/ijaa.1736395

Öz

A comprehensive review of sharkskin-inspired surfaces and riblet structures (also known as denticles) is conducted which is motivated by the desire to enhance aerodynamic efficiency and sustainability in modern aviation. Inspired by natural sea creatures like sharks, biomimetic surface alterations aim to reduce drag by altering the flow behavior around aerodynamic surfaces. This approach has gained increasing attention as a promising method for improving aircraft performance, particularly due to its direct impact on reducing fuel consumption. Following the literature review, a simple case study is presented to depict the suitability of riblet applications. The results demonstrated that riblet structures (denticles) can lead to significant drag reduction and, hence enhanced aerodynamic performance. These surface modifications not only can benefit conventional aircrafts but also offer a great promise for novel air vehicles, including unmanned aerial systems, electric aircraft, and urban air mobility platforms, where efficiency and extended range are critical. These findings highlight the potential of biomimetic surface designs as an effective solution in the development of next-generation aerospace systems.

Kaynakça

  • Anderson, E. J., McGillis, W., & Grosenbaugh, M. A. (2001). The boundary layer of swimming fish. Journal of Experimental Biology, 204(1), 81–102. https://doi.org/10.1242/jeb.204.1.81
  • Bechert, D. W., & Hage, W. (2006). Drag reduction with riblets in nature and engineering. In C. A. Brebbia (Ed.), Flow phenomena in nature (Vol. 2, pp. 457–504). WIT Press. https://doi.org/10.2495/1-84564-001-4/38
  • Bechert, D. W., Bruse, M., & Hage, W. (2000). Experiments with three-dimensional riblets as an idealized model of shark skin. Experiments in Fluids, 28(5), 403–412. https://doi.org/10.1007/s003480050395
  • Bechert, D. W., Bruse, M., Hage, W., & Meyer, R. (2000). Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften, 87, 157–171. https://doi.org/10.1007/s001140050696
  • Bechert, D. W., Bruse, M., Hage, W., Van Der Hoeven, J. G. T., & Hoppe, G. (1997). Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. Journal of Fluid Mechanics, 338, 59–87. https://doi.org/10.1017/S0022112096004673
  • Bhushan, B. (2009). Biomimetics: Lessons from nature—An overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445–1486. https://doi.org/10.1098/rsta.2009.0011
  • Bixler, G. D., & Bhushan, B. (2013). Fluid drag reduction with shark-skin riblet inspired microstructured surfaces. Advanced Functional Materials, 23(36), 4507–4528. https://doi.org/10.1002/adfm.201203783
  • Bhushan, B. (2017). Nanotribology and nanomechanics: An introduction (4th ed., pp. 1–928). Springer. https://doi.org/10.1007/978-3-319-51433-8
  • Bushnell, D. M., & Hefner, J. N. (1990). Viscous drag reduction in boundary layers. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/4.866401
  • Coles, D., & Wadcock, A. J. (1978). Flying-hot-wire study of 2-dimensional mean flow past an NACA 4412 airfoil at maximum lift. In 11th Fluid and Plasma Dynamics Conference, Seattle, WA. AIAA. https://doi.org/10.2514/6.1978-1169
  • Choi, K. S. (1984). A survey of the turbulent drag reduction using passive devices. Scientific and Technical Information Network (STIN), 85, 20268
  • Choi, K. S. (1988). The wall-pressure fluctuations of modified turbulent boundary layer with riblets. In H. Görtler & W. Tollmien (Eds.), Proceedings of the IUTAM Symposium on the Structure of Turbulence and Drag Reduction (pp. 251–266). Springer. https://doi.org/10.1007/978-3-642-73735-7_27
  • Choi, K. (1989). Near-wall structure of a turbulent boundary layer with riblets. Journal of Fluid Mechanics, 208, 417–458. https://doi.org/10.1017/S0022112089002870
  • Choi, H., Moin, P., & Kim, J. (1993). Direct numerical simulation of turbulent flow over riblets. Journal of Fluid Mechanics, 255, 503–539. https://doi.org/10.1017/S0022112093002563
  • Choi, K. S. (2013). Smart flow control with riblets. Advanced Materials Research, 745, 27–40. https://doi.org/10.4028/www.scientific.net/AMR.745.27
  • Chu, D., & Karniadakis, G. E. (1993). A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. Journal of Fluid Mechanics, 250, 1–42. https://doi.org/10.1017/S0022112093000915
  • Dean, B., & Bhushan, B. (2010). Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1929), 4775–4806. https://doi.org/10.1098/rsta.2010.0201
  • Domel, A. G., Saadat, M., Weaver, J. C., Haj-Hariri, H., Bertoldi, K., & Lauder, G. V. (2018). Shark skin-inspired designs that improve aerodynamic performance. Journal of the Royal Society Interface, 15, 20170828. https://doi.org/10.1098/rsif.2017.0828
  • Feld, K., Kolborg, A. N., Nyborg, C. M., Salewski, M., Steffensen, J. F., & Berg-Sørensen, K. (2019). Dermal denticles of three slowly swimming shark species: Microscopy and flow visualization. Biomimetics, 4(3), 38. https://doi.org/10.3390/biomimetics4030038
  • Fu, Y. F., Yuan, C. Q., & Bai, X. Q. (2017). Marine drag reduction of shark skin inspired riblet surfaces. Biosurface and Biotribology, 3(1), 11–24. https://doi.org/10.1016/j.bsbt.2017.02.001
  • García-Mayoral, R., & Jiménez, J. (2011). Hydrodynamic stability and breakdown of the viscous regime over riblets. Journal of Fluid Mechanics, 678, 317–347. https://doi.org/10.1017/jfm.2011.119
  • Grüneberger, R., & Hage, W. (2011). Drag characteristics of longitudinal and transverse riblets at low dimensionless spacings. Experiments in Fluids, 50(2), 363–373. https://doi.org/10.1007/s00348-010-0926-5
  • Hage, W., Bechert, D. W., & Bruse, M. (2001). Yaw angle effects on optimized riblets. In R. H. J. Sellars (Ed.), Aerodynamic drag reduction technologies (pp. 278–285). Springer. https://doi.org/10.1007/978-3-642-56684-6_32
  • He, Z., Lu, Z., & Sun, Y. (2023). Principles and examples of drag reduction in civil airliners. Applied and Computational Engineering, 28(1), 80–91. https://doi.org/10.54254/2755-2721/28/20230131
  • Hwang, J., Jeong, Y., Park, J. M., Lee, K. H., Hong, J. W., & Choi, J. (2015). Biomimetics: Forecasting the future of science, engineering, and medicine. International Journal of Nanomedicine, 10, 5701–5713. https://doi.org/10.2147/IJN.S83665
  • Jung, Y. C., & Bhushan, B. (2010). Biomimetic structures for fluid drag reduction in laminar and turbulent flows. Journal of Physics: Condensed Matter, 22, 035104. https://doi.org/10.1088/0953-8984/22/3/035104
  • Jo, S., Ahn, S., Lee, H., Jung, C. M., Song, S., & Kim, D. R. (2018). Water-repellent hybrid nanowire and micro-scale denticle structures on flexible substrates of effective air retention. Scientific Reports, 8, 16631. https://doi.org/10.1038/s41598-018-34841-3
  • Jiakun, H., Zhe, H., Fangbao, T., & Gang, C. (2021). Review on bio-inspired flight systems and bionic aerodynamics. Chinese Journal of Aeronautics, 34, 170–186. https://doi.org/10.1016/j.cja.2020.07.026
  • Karniadakis, G. E., & Choi, K. S. (2003). Mechanisms on transverse motions in turbulent wall flows. Annual Review of Fluid Mechanics, 35, 45–62. https://doi.org/10.1146/annurev.fluid.35.101101.161317
  • Kurita, M., Nishizawa, A., Kwak, D., Iijima, H., Iijima, Y., Takahashi, H., Sasamori, M., Abe, H., Koga, S., & Nakakita, K. (2018). Flight test of a paint-riblet for reducing skin-friction. In Applied Aerodynamics Conference, Atlanta, GA. AIAA. https://doi.org/10.2514/6.2018-3256
  • Lang, A. W., Motta, P., Hidalgo, P., & Westcott, M. (2008). Bristled shark skin: A microgeometry for boundary layer control. Bioinspiration & Biomimetics, 3(4), 046005. https://doi.org/10.1088/1748-3182/3/4/046005
  • Lauder, G. V., Wainwright, D. K., Domel, A. G., Weaver, J. C., Wen, L., & Bertoldi, K. (2016). Structure, biomimetics, and fluid dynamics of fish skin surfaces. Physical Review Fluids, 1, 11044. https://doi.org/10.1103/PhysRevFluids.1.11044
  • Lin, J. C. (2002). Review of research on low-profile vortex generators to control boundary-layer separation. Progress in Aerospace Sciences, 38(4–5), 389–420. https://doi.org/10.1016/S0376-0421(02)00010-6
  • Lin, J. (1999). Control of turbulent boundary-layer separation using micro-vortex generators. In 30th Fluid Dynamics Conference, Reston, VA. AIAA. https://doi.org/10.2514/6.1999-3404.
  • Lin, J. C., Robinson, S. K., McGhee, R. J., & Valarezo, W. O. (1994). Separation control on high-lift airfoils via micro-vortex generators. Journal of Aircraft, 31(6), 1317–1323. https://doi.org/10.2514/3.46627
  • Lufthansa Technik. (2025, January 28). The AeroSHARK effect. https://www.lufthansa-technik.com/en/aeroshark
  • Martin, S., & Bhushan, B. (2016). Modeling and optimization of shark-inspired riblet geometries for low drag applications. Journal of Colloid and Interface Science, 474, 206–215. https://doi.org/10.1016/j.jcis.2016.04.033
  • Mele, B. (2022). Riblet drag reduction modeling and simulation. Fluids, 7(6), 249. https://doi.org/10.3390/fluids7060249
  • Mele, B., Tognaccini, R., & Catalano, P. (2016). Performance assessment of a transonic wing–body configuration with riblets installed. Journal of Aircraft, 53(1), 129–140. https://doi.org/10.2514/1.C033194
  • Muhammad, C., & Chong, T. P. (2022). Mitigation of turbulent noise sources by riblets. Journal of Sound and Vibration, 541, 117302. https://doi.org/10.1016/j.jsv.2022.117302
  • Neumann, D., & Dinkelacker, A. (1991). Drag measurements on V-grooved surfaces on a body of revolution in axial flow. Applied Scientific Research, 48, 105–114. https://doi.org/10.1007/BF00382635
  • Nieuwstadt, F. T. M., Wolthers, W., Leijdens, H., Krishna, P. K., & Schwarz-van, M. A. (1993). The reduction of skin friction by riblets under the influence of an adverse pressure gradient. Experiments in Fluids, 15, 17–26. https://doi.org/10.1007/BF00193857
  • Oeffner, J., & Lauder, G. V. (2012). The hydrodynamic function of shark skin and two biomimetic applications. Journal of Experimental Biology, 215(5), 785–795. https://doi.org/10.1242/jeb.063040
  • Park, S. R., & Wallace, J. M. (1994). Flow alteration and drag reduction by riblets in a turbulent boundary layer. AIAA Journal, 32(1), 31–38. https://doi.org/10.2514/3.11939
  • Pfingsten, K. C. (2021, November 29). The AeroSHARK story. LinkedIn. https://www.linkedin.com/pulse/aeroshark-story-part-i-dr-kai-christoph-pfingsten
  • Rastegari, A., & Akhavan, R. (2018). The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. Journal of Fluid Mechanics, 838, 68–104. https://doi.org/10.1017/jfm.2017.848
  • Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London. A, 186, 123–164. https://doi.org/10.1098/rsta.1895.0004
  • Robinson, S. K. (1991). The kinematics of turbulent boundary layer structure (NASA Technical Memorandum 103859). NASA Ames Research Center.
  • Saravi, S. S., & Cheng, K. (2013). A review of drag reduction by riblets and micro-textures in turbulent boundary layers. European Scientific Journal, 9(12), 62–81.
  • Sareen, A., Deters, R. W., Henry, S. P., & Selig, M. S. (2014). Drag reduction using riblet film applied to airfoils for wind turbines. Journal of Solar Energy Engineering, 136, 021007. https://doi.org/10.1115/1.4025759
  • Sasamori, M., Koga, S., & Kurita, M. (2022). Pressure gradient effects on the performance of riblets installed on aircraft surfaces. Journal of Aircraft, 59(2), 447–457. https://doi.org/10.2514/1.C036046
  • Schian, M. R., Rocha, J., & Li, L. (2023). Advances in riblets design. Applied Sciences, 13, 10893. https://doi.org/10.3390/app131910893.
  • Schultz, W. W., & Webb, P. W. (2002). Power requirements for swimming: Do new methods resolve old questions? Integrative and Comparative Biology, 42(5), 1018–1025. https://doi.org/10.1093/icb/42.5.1018
  • Shi, L., Zhang, C. C., Wang, J., Wang, Y. H., Zhang, X. P., & Ren, L. Q. (2011). Reduction of aerodynamic noise from NACA 0018 airfoil model using bionic methods. Journal of Jilin University (Engineering and Technology Edition), 41, 1664–1668.
  • Stenzel, V., Wilke, Y., & Hage, W. (2011). Drag-reducing paints for the reduction of fuel consumption in aviation and shipping. Progress in Organic Coatings, 70(4), 224–229. https://doi.org/10.1016/j.porgcoat.2010.10.009
  • Szodruch, J. (1991). Viscous drag reduction on transport aircraft. In 29th Aerospace Sciences Meeting, Reno, NV. AIAA. https://doi.org/10.2514/6.1991-70
  • Suzuki, Y., & Kasagi, N. (1994). Turbulent drag reduction mechanism above a riblet surface. AIAA Journal, 32(9), 1781–1790. https://doi.org/10.2514/3.12103
  • Takahashi, H., Kurita, M., Iijima, H., & Koga, S. (2023). Time-series-data interpolation applied to boundary-layer profiles measured on different flights. Aerospace, 10, 322. https://doi.org/10.3390/aerospace10040322
  • Tanürün, H. E., Akın, A. G., Acır, A., & Şahin, İ. (2024). Experimental and numerical investigation of roughness structure in wind turbine airfoil at low Reynolds number. International Journal of Thermodynamics, 27(3), 26–36. https://doi.org/10.5541/ijot.1338350
  • Tytell, E. D., Borazjani, I., Sotiropoulos, F., Baker, T. V., Anderson, E. J., & Lauder, G. V. (2010). Disentangling the functional roles of morphology and motion in the swimming of fish. Integrative and Comparative Biology, 50(6), 1140–1154. https://doi.org/10.1093/icb/icq057
  • Tytell, E. D. (2007). Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies. Experiments in Fluids, 43(5), 701–712. https://doi.org/10.1007/s00348-007-0288-y
  • Walsh, M. J. (1980). Drag characteristics of V-groove and transverse curvature riblets. In Viscous flow drag reduction (pp. 168–184). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/5.9781600865466.0168.0184
  • Walsh, M. J. (1982). Turbulent boundary layer drag reduction using riblets. In Proceedings of the 20th Aerospace Sciences Meeting (pp. 1–12). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1982-169
  • Walsh, M. J. (1983). Riblets as a viscous drag reduction technique. AIAA Journal, 21(4), 485–486. https://doi.org/10.2514/3.60199
  • Walsh, M. J., & Lindemann, A. M. (1984, January). Optimization and application of riblets for turbulent drag reduction. In Proceedings of the 22nd Aerospace Sciences Meeting (pp. 1–12). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.1984-345
  • Walsh, M. J., Sellers, W. L., & McGinley, C. B. (1988). Riblet drag at flight conditions. Journal of Aircraft, 26(6), 570–575. https://doi.org/10.2514/3.45687
  • Wen, L., Weaver, J. C., & Lauder, G. V. (2014). Biomimetic shark skin: Design, fabrication and hydrodynamic function. Journal of Experimental Biology, 217, 1656–1666. https://doi.org/10.1242/jeb.097097
  • Xiao, G., He, Y., Huang, Y., & Li, Q. (2019). Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding. IEEE Access, 7, 107635–107647. https://doi.org/10.1109/ACCESS.2019.2933253
  • Yang, X., Wang, J., Jiang, B. Z., & Xiao, Q. (2021). Numerical study of effect of sawtooth riblets on low-Reynolds-number airfoil flow characteristic and aerodynamic performance. Processes, 9, 2102. https://doi.org/10.3390/pr9122102
  • Zhang, Y., Meng, W., Fan, B., & Tang, W. (2016). Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar. SpringerPlus, 5, 1221. https://doi.org/10.1186/s40064-016-2857-2
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Havacılık Yapıları, Uçak Performansı ve Uçuş Kontrol Sistemleri, Uzay Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Erdogan Kaygan 0000-0003-3319-3657

Reem Aly 0009-0002-6558-4601

Gönderilme Tarihi 8 Temmuz 2025
Kabul Tarihi 15 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Kaygan, E., & Aly, R. (2025). The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance. International Journal of Aeronautics and Astronautics, 6(2), 79-98. https://doi.org/10.55212/ijaa.1736395
AMA Kaygan E, Aly R. The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance. International Journal of Aeronautics and Astronautics. Aralık 2025;6(2):79-98. doi:10.55212/ijaa.1736395
Chicago Kaygan, Erdogan, ve Reem Aly. “The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance”. International Journal of Aeronautics and Astronautics 6, sy. 2 (Aralık 2025): 79-98. https://doi.org/10.55212/ijaa.1736395.
EndNote Kaygan E, Aly R (01 Aralık 2025) The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance. International Journal of Aeronautics and Astronautics 6 2 79–98.
IEEE E. Kaygan ve R. Aly, “The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance”, International Journal of Aeronautics and Astronautics, c. 6, sy. 2, ss. 79–98, 2025, doi: 10.55212/ijaa.1736395.
ISNAD Kaygan, Erdogan - Aly, Reem. “The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance”. International Journal of Aeronautics and Astronautics 6/2 (Aralık2025), 79-98. https://doi.org/10.55212/ijaa.1736395.
JAMA Kaygan E, Aly R. The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance. International Journal of Aeronautics and Astronautics. 2025;6:79–98.
MLA Kaygan, Erdogan ve Reem Aly. “The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance”. International Journal of Aeronautics and Astronautics, c. 6, sy. 2, 2025, ss. 79-98, doi:10.55212/ijaa.1736395.
Vancouver Kaygan E, Aly R. The impact of the shark skin-inspired riblet concept application on the aircraft wing surface on aerodynamic performance. International Journal of Aeronautics and Astronautics. 2025;6(2):79-98.

International Journal of Aeronautics and Astronautics Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.