Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri

Yıl 2021, Cilt 2, Sayı 2, 28 - 40, 31.08.2021

Öz

Havayolu işletmeleri tarihsel süreç içerisinde farklı krizler neticesinde finansal başarısızlığa maruz kalmışlardır. 1978 yılındaki petrol krizi neticesinde yakıt maliyetleri artarak finansal krizler yaşanmıştır. 2001 yılında yaşanan ikiz kule terör saldırısı ve 2008 yılında yaşanan küresel ekonomik kriz neticesinde havayolu işletmeleri büyük zararlar etmiştir. Havayolu işletmeleri özellikle kriz zamanlarında finansal başarısızlıklara karşı tedbir almak zorundadırlar. Bu bağlamda çalışmanın amacı havayolu işletmelerinde finansal başarısızlık riskinin operasyonel belirleyicilerinin saptanmasıdır. Bu çalışma, geleneksel havayolu işletmelerinde havayolu sektörüne özgü oranların finansal başarısızlığa etkisi üzerine odaklanmıştır. Çalışma kapsamında finansal başarısızlık riskine etki eden faktörler, 2009 ile 2019 yılları arasında 11 geleneksel havayolu işletmesi örnekleminde inceleme yapılmıştır. Havayolu işletmelerinin finansal başarısızlığına etki edebilecek havayollarına özgü operasyonel oranlar olarak; ücretli yolcu km (RPK), uçak koltuk doluluk oran (LF) ve arz edilen koltuk km başına maliyet (CASK) kullanılmıştır. Finansal başarısızlık göstergesi olarak Altman Z’’ skoru kullanılmıştır. Yapılan sabit etkiler panel veri analizi sonucuna göre ise CASK göstergesinin finansal başarısızlığı negatif olarak etkilediği tespit edilmiştir. Sonuç olarak havayolu işletmeleri, finansal başarısızlık etkilerinden kurtulmak için en önemli maliyet kalemlerinden olan yakıt ve işçilik maliyetlerini minimize etmeleri gerektiği sonucuna varılmaktadır.

Kaynakça

  • Assaf, A. G. and Josiassen, A. 2012. European vs. U.S. airlines: Performance comparison in a dynamic market. Tourism Management 33, 317-326.
  • FAA Wildlife Strike Database, 2019. U.S. Department of Agriculture Animal and Plant Health Inspection Service, Some Significant Wildlife Strikes to Civil Aircraft in the United States, 1990 – 2019.
  • Barros, P. C. And Wanke, P. 2015. An analysis of African airlines efficiency with two-stage TOPSIS and neural networks. Journal of Air Transport Management 44-45, 90-102.
  • Behn, B. K. and Riley, R. A. 1999. Using nonfinancial ınformation to predict financial performance: the case of the u.s. airline industry. Journal of Accounting, Auditing and Finance, April 1999. 29-56.
  • Choi, K. 2017. Multi-period efficiency and productivity changes in US domestic airlines. Journal of Air Transport Management 59, 18-25.
  • Demyduk, G. 2011. Optimal financial key performance indicators: evidence from the airline industry. Accounting & Taxation Volume 3 Number 2, 39-51.
  • Dizkırıcı, A. S., Topal, B., Yaghi, H. 2016. Analyzing The Relationship Between Profitability and Traditional Ratios: Major Airline Companies Sample, Journal of Accounting, Finance and Auditing Studies (JAFAS), Cilt: 2, Sayı: 2, ss.96-114.
  • Empeh, V. V. 2013. Bringing the Airline Industry Back to Profitability by Analyzing Capital Structure, Cost, and Operational Efficiency. Doctor of Philosophy, USA: Walden University: College of Management And Technology.
  • Francis, G., Humphreys, I. and Fry, J., 2005. The nature and prevalence of the use of performance measurement techniques by airlines, Journal of Air Transport Management 11, 207–217.
  • Gökbulut, R. İ. 2009. Hissedar Değeri ile Finansal Performans Ölçütleri Arasındaki İlişki ve İMKB Üzerine Bir Uygulama. Yayınlanmamış Doktora Tezi. İstanbul: İstanbul Üniversitesi.
  • Gritta R.D., Adrangi B., Davalos S. ve Bright D. 2008. A Review of the History of Air Carrier Bankruptcy Forecasting and the Application of Various Models to the US Airline Industry: 1980-2005. Södertörn Academic Studies. 193-214.
  • Gudmundsson, V. S. 2002. Airline distress prediction using non-financial indicators. Journal of Air Transportation (7), 2, 1–24.
  • Güriş, S. 2015. Panel Veri ve Panel Veri Modelleri. Kolektif içinde, Modelleri, Stata İle Panel Veri. İstanbul: Der Yayınları.
  • Hsu, C. C. 2017. Applying Z-score Models in Aviation Finance Education: A Case Study of Some US Carriers. International Journal of Education and Social Science, 4(3), 9-12.
  • Jang, S., Choi, K. And Lee, K. 2011. External shocks and efficiency changes in the US airline industry. The Service Industries Journal, 31:14, 2411-2435.
  • Khim, L. S.; Chang, C. S.; Larry N. K. 2010. Service quality, service recovery, and financial performance: an analysis of the US airline industry. Advances in Management Accouinting, 18, 27–53.
  • Kiracı, K. 2019. Determinants of Financial Risk: An Empirical Application on Low-Cost Carriers. Scientific Annals of Economics and Business 66 (3), 2019, 335-349.
  • Kroeze, C. 2004. Predicting airline corporate bankruptcies using a modified Altman Z - score model. UNLV Retrospective Theses & Dissertations. 2609. Available at https://digitalscholarship.unlv.edu/rtds/2609
  • Kumar, M. and Anand, M. 2013. Assessing Financial Health Of A Firm Using Altman's Original And Revised Z-Score Models: A Case Of Kingfisher Airlines Ltd (India). Journal Of Applied Management And Investments. 2. 36-48.
  • Li Y. Wang, Y-z. and Cui, Q. 2015. Evaluating airline efficiency: An application of Virtual Frontier Network SBM. Transportation Research Part E 81, 1-17.
  • Liedtka, S. L. 2002. The information content of nonfinancial performance measures in the airline industry. Journal of Business Finance & Accounting, 29(7) & (8), 1105-1121.
  • Mantin, B. and Wang, J-H. E. 2012. Determinants of profitability and recovery from system-wide shocks: The case of the airline industry. Journal of Airline and Airport Management, 2(1), 1-21.
  • Mantziaris, S. Z. 2015. Bankruptcy Prediction Models: An Empirical Analysis of Altman’s Z-Score Model in Forty Greek Companies in the Period of Economic Recession. Dissertation, School of Business Administration, Department of Accounting and Finance, University of Macedonia.
  • Min, H. and Joo, S-J. 2016. A comparative performance analysis of airline strategic alliances using data envelopment analysis. Journal of Air Transport Management 52, 99-110.
  • Riley, R. A., Pearson, T. A. and Trompeter, G. 2003. The value relevance of non-financial performance variables and accounting information: the case of the airline industry. Journal of Accounting and Public Policy, 22, 231–254.
  • Sakız, B. 2017. Finansal Oranlar Kullanılarak Risk Yönetimi ve Havayolu Sektörü – Bir Uygulama, International Conference on Eurasian Economies, ss.282-290.
  • Sakız, B. ve Ünkaya, G. 2018. Hava Yolu Taşımacılığı Sektöründe İflas Riski – Yapay Sinir Ağları ile Airscore Tahmini. Marmara Üniversitesi Öneri Dergisi, Cilt 13, Sayı 50, Temmuz 2018, ISSN 1300-0845, ss. 159-172.
  • Schefczyk, M. 1993. Operational performance of airlines: an extension of traditional measurement paradigms. Strategic Management Journal (14), 301–317.
  • Tsikriktis, N. 2007. The Effect of Operational Performance and Focus on Profitability: A Longitudinal Study of the U.S. Airline Industry. Manufacturing & Service Operations Management, Vol 9, No.4. 506-217.
  • Tunahan, H., Esen, S., Takıl, D. 2016. Havayolu Şirketlerinin Finansal Risk Düzeylerinin Bulanık Mantık Yöntemi ile Karşılaştırmalı Analizi, Journal of Accounting, Finance and Auditing Studies (JAFAS), Cilt: 2, Sayı: 2, ss.239-264.
  • Yaghi, H. 2015. Comparing The Performances Of Major Airline Companies By Traditional And Airline-Specific Ratios And Measures, Yayımlanmamış Yüksek Lisans Tezi, Sakarya: Sakarya Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Yerdelen Tatoğlu, F. 2013. Panel veri ekonometrisi (İkinci baskı b.). İstanbul: Beta Yayınevi.
  • Zou, B. Elke, M. Hansen, M. Kafle, N. 2014 Evaluating air carrier fuel efficiency in the US airline industry. Transportation Research Part A 59, 306-330.
  • Kurtaran Çelik, M. 2009. Finansal şaşarısızlık Tahmin modellerinin İMKB’deki firmalar için karşılaştırmalı analizi. Yayımlanmamış Doktora Tezi, Trabzın: Karadeniz Teknik Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Altman, E. 2000. Predicting financial distress of companies: revisiting the Z-Score and ZETA® models. Handbook of Research Methods and Applications in Empirical Finance.
  • Alıcı, A. ve Polat, L. 2020. Economic effect of coronavirus (Covid-19) outbreak on airline businesses. Turkish Studies 15(6), 49-61.
  • ICAO 2021. Effects of novel coronavirus (Covid‐19) on civil aviation: Economic impact analysis.https://www.icao.int/sustainability/Documents/COVID19/ICAO_Coronavirus_Econ_Impact.pdf (Erişim Tarihi: 29.08.2021)

Determinants of financial failure risk in airlines

Yıl 2021, Cilt 2, Sayı 2, 28 - 40, 31.08.2021

Öz

Airlines have faced financial failures as a result of different crises in the historical process. As a result of the oil crisis in 1978, fuel costs increased and financial crises occurred. After the twin tower terrorist attack in 2001, airline businesses suffered greatly. As a result of the global economic crisis in 2008, airline businesses exposed to huge losses. Airlines have to take precautions against financial failures, especially in times of crisis. In this context, the aim of the study is to determine the operational determinants of financial failure risk in airline companies. This study focuses on the effect of airline industry-specific rates on financial failure in traditional airlines.. Within the scope of the study, factors affecting the risk of financial failure were examined in 11 traditional airline business samples between 2009 and 2019. As operational rates specific to airlines that may affect the financial failure of airline businesses; revenue per km (RPK), load factor (LF) and cost per available seat km (CASK) were used. Altman Z score was used as an indicator of financial failure. According to the results of the fixed effects panel data analysis, it was determined that the CASK indicator had a negative effect on financial failure. As a result, it is concluded that airlines should minimize fuel and labor costs, which are the most important cost items, in order to avoid the effects of financial failure.

Kaynakça

  • Assaf, A. G. and Josiassen, A. 2012. European vs. U.S. airlines: Performance comparison in a dynamic market. Tourism Management 33, 317-326.
  • FAA Wildlife Strike Database, 2019. U.S. Department of Agriculture Animal and Plant Health Inspection Service, Some Significant Wildlife Strikes to Civil Aircraft in the United States, 1990 – 2019.
  • Barros, P. C. And Wanke, P. 2015. An analysis of African airlines efficiency with two-stage TOPSIS and neural networks. Journal of Air Transport Management 44-45, 90-102.
  • Behn, B. K. and Riley, R. A. 1999. Using nonfinancial ınformation to predict financial performance: the case of the u.s. airline industry. Journal of Accounting, Auditing and Finance, April 1999. 29-56.
  • Choi, K. 2017. Multi-period efficiency and productivity changes in US domestic airlines. Journal of Air Transport Management 59, 18-25.
  • Demyduk, G. 2011. Optimal financial key performance indicators: evidence from the airline industry. Accounting & Taxation Volume 3 Number 2, 39-51.
  • Dizkırıcı, A. S., Topal, B., Yaghi, H. 2016. Analyzing The Relationship Between Profitability and Traditional Ratios: Major Airline Companies Sample, Journal of Accounting, Finance and Auditing Studies (JAFAS), Cilt: 2, Sayı: 2, ss.96-114.
  • Empeh, V. V. 2013. Bringing the Airline Industry Back to Profitability by Analyzing Capital Structure, Cost, and Operational Efficiency. Doctor of Philosophy, USA: Walden University: College of Management And Technology.
  • Francis, G., Humphreys, I. and Fry, J., 2005. The nature and prevalence of the use of performance measurement techniques by airlines, Journal of Air Transport Management 11, 207–217.
  • Gökbulut, R. İ. 2009. Hissedar Değeri ile Finansal Performans Ölçütleri Arasındaki İlişki ve İMKB Üzerine Bir Uygulama. Yayınlanmamış Doktora Tezi. İstanbul: İstanbul Üniversitesi.
  • Gritta R.D., Adrangi B., Davalos S. ve Bright D. 2008. A Review of the History of Air Carrier Bankruptcy Forecasting and the Application of Various Models to the US Airline Industry: 1980-2005. Södertörn Academic Studies. 193-214.
  • Gudmundsson, V. S. 2002. Airline distress prediction using non-financial indicators. Journal of Air Transportation (7), 2, 1–24.
  • Güriş, S. 2015. Panel Veri ve Panel Veri Modelleri. Kolektif içinde, Modelleri, Stata İle Panel Veri. İstanbul: Der Yayınları.
  • Hsu, C. C. 2017. Applying Z-score Models in Aviation Finance Education: A Case Study of Some US Carriers. International Journal of Education and Social Science, 4(3), 9-12.
  • Jang, S., Choi, K. And Lee, K. 2011. External shocks and efficiency changes in the US airline industry. The Service Industries Journal, 31:14, 2411-2435.
  • Khim, L. S.; Chang, C. S.; Larry N. K. 2010. Service quality, service recovery, and financial performance: an analysis of the US airline industry. Advances in Management Accouinting, 18, 27–53.
  • Kiracı, K. 2019. Determinants of Financial Risk: An Empirical Application on Low-Cost Carriers. Scientific Annals of Economics and Business 66 (3), 2019, 335-349.
  • Kroeze, C. 2004. Predicting airline corporate bankruptcies using a modified Altman Z - score model. UNLV Retrospective Theses & Dissertations. 2609. Available at https://digitalscholarship.unlv.edu/rtds/2609
  • Kumar, M. and Anand, M. 2013. Assessing Financial Health Of A Firm Using Altman's Original And Revised Z-Score Models: A Case Of Kingfisher Airlines Ltd (India). Journal Of Applied Management And Investments. 2. 36-48.
  • Li Y. Wang, Y-z. and Cui, Q. 2015. Evaluating airline efficiency: An application of Virtual Frontier Network SBM. Transportation Research Part E 81, 1-17.
  • Liedtka, S. L. 2002. The information content of nonfinancial performance measures in the airline industry. Journal of Business Finance & Accounting, 29(7) & (8), 1105-1121.
  • Mantin, B. and Wang, J-H. E. 2012. Determinants of profitability and recovery from system-wide shocks: The case of the airline industry. Journal of Airline and Airport Management, 2(1), 1-21.
  • Mantziaris, S. Z. 2015. Bankruptcy Prediction Models: An Empirical Analysis of Altman’s Z-Score Model in Forty Greek Companies in the Period of Economic Recession. Dissertation, School of Business Administration, Department of Accounting and Finance, University of Macedonia.
  • Min, H. and Joo, S-J. 2016. A comparative performance analysis of airline strategic alliances using data envelopment analysis. Journal of Air Transport Management 52, 99-110.
  • Riley, R. A., Pearson, T. A. and Trompeter, G. 2003. The value relevance of non-financial performance variables and accounting information: the case of the airline industry. Journal of Accounting and Public Policy, 22, 231–254.
  • Sakız, B. 2017. Finansal Oranlar Kullanılarak Risk Yönetimi ve Havayolu Sektörü – Bir Uygulama, International Conference on Eurasian Economies, ss.282-290.
  • Sakız, B. ve Ünkaya, G. 2018. Hava Yolu Taşımacılığı Sektöründe İflas Riski – Yapay Sinir Ağları ile Airscore Tahmini. Marmara Üniversitesi Öneri Dergisi, Cilt 13, Sayı 50, Temmuz 2018, ISSN 1300-0845, ss. 159-172.
  • Schefczyk, M. 1993. Operational performance of airlines: an extension of traditional measurement paradigms. Strategic Management Journal (14), 301–317.
  • Tsikriktis, N. 2007. The Effect of Operational Performance and Focus on Profitability: A Longitudinal Study of the U.S. Airline Industry. Manufacturing & Service Operations Management, Vol 9, No.4. 506-217.
  • Tunahan, H., Esen, S., Takıl, D. 2016. Havayolu Şirketlerinin Finansal Risk Düzeylerinin Bulanık Mantık Yöntemi ile Karşılaştırmalı Analizi, Journal of Accounting, Finance and Auditing Studies (JAFAS), Cilt: 2, Sayı: 2, ss.239-264.
  • Yaghi, H. 2015. Comparing The Performances Of Major Airline Companies By Traditional And Airline-Specific Ratios And Measures, Yayımlanmamış Yüksek Lisans Tezi, Sakarya: Sakarya Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Yerdelen Tatoğlu, F. 2013. Panel veri ekonometrisi (İkinci baskı b.). İstanbul: Beta Yayınevi.
  • Zou, B. Elke, M. Hansen, M. Kafle, N. 2014 Evaluating air carrier fuel efficiency in the US airline industry. Transportation Research Part A 59, 306-330.
  • Kurtaran Çelik, M. 2009. Finansal şaşarısızlık Tahmin modellerinin İMKB’deki firmalar için karşılaştırmalı analizi. Yayımlanmamış Doktora Tezi, Trabzın: Karadeniz Teknik Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Altman, E. 2000. Predicting financial distress of companies: revisiting the Z-Score and ZETA® models. Handbook of Research Methods and Applications in Empirical Finance.
  • Alıcı, A. ve Polat, L. 2020. Economic effect of coronavirus (Covid-19) outbreak on airline businesses. Turkish Studies 15(6), 49-61.
  • ICAO 2021. Effects of novel coronavirus (Covid‐19) on civil aviation: Economic impact analysis.https://www.icao.int/sustainability/Documents/COVID19/ICAO_Coronavirus_Econ_Impact.pdf (Erişim Tarihi: 29.08.2021)

Ayrıntılar

Birincil Dil Türkçe
Konular İşletme Finans
Bölüm Araştırma Makaleleri
Yazarlar

Abdulkadir ALICI (Sorumlu Yazar)
NECMETTİN ERBAKAN ÜNİVERSİTESİ
0000-0002-4796-6385
Türkiye

Yayımlanma Tarihi 31 Ağustos 2021
Başvuru Tarihi 10 Ağustos 2021
Kabul Tarihi 31 Ağustos 2021
Yayınlandığı Sayı Yıl 2021, Cilt 2, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { ijaa981027, journal = {International Journal of Aeronautics and Astronautics}, issn = {}, eissn = {2757-6574}, address = {Akademi Mah. Yeni İstanbul Cad. Sivil Havacılık Yüksekokulu No: 347 Alaeddin Keykubat Kampüsü/Selçuklu/Konya}, publisher = {Selçuk Üniversitesi}, year = {2021}, volume = {2}, pages = {28 - 40}, doi = {}, title = {Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri}, key = {cite}, author = {Alıcı, Abdulkadir} }
APA Alıcı, A. (2021). Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri . International Journal of Aeronautics and Astronautics , 2 (2) , 28-40 . Retrieved from https://dergipark.org.tr/tr/pub/ijaa/issue/64751/981027
MLA Alıcı, A. "Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri" . International Journal of Aeronautics and Astronautics 2 (2021 ): 28-40 <https://dergipark.org.tr/tr/pub/ijaa/issue/64751/981027>
Chicago Alıcı, A. "Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri". International Journal of Aeronautics and Astronautics 2 (2021 ): 28-40
RIS TY - JOUR T1 - Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri AU - Abdulkadir Alıcı Y1 - 2021 PY - 2021 N1 - DO - T2 - International Journal of Aeronautics and Astronautics JF - Journal JO - JOR SP - 28 EP - 40 VL - 2 IS - 2 SN - -2757-6574 M3 - UR - Y2 - 2021 ER -
EndNote %0 International Journal of Aeronautics and Astronautics Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri %A Abdulkadir Alıcı %T Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri %D 2021 %J International Journal of Aeronautics and Astronautics %P -2757-6574 %V 2 %N 2 %R %U
ISNAD Alıcı, Abdulkadir . "Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri". International Journal of Aeronautics and Astronautics 2 / 2 (Ağustos 2021): 28-40 .
AMA Alıcı A. Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri. IJAA. 2021; 2(2): 28-40.
Vancouver Alıcı A. Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri. International Journal of Aeronautics and Astronautics. 2021; 2(2): 28-40.
IEEE A. Alıcı , "Havayolu işletmelerinde finansal başarısızlık riskinin belirleyicileri", International Journal of Aeronautics and Astronautics, c. 2, sayı. 2, ss. 28-40, Ağu. 2021