Araştırma Makalesi
BibTex RIS Kaynak Göster

CFRP ve Al2024-T3 helikopter kanadının düşük hızlı darbe cevabı

Yıl 2024, Cilt: 5 Sayı: 2, 51 - 61, 31.12.2024

Öz

Havacılık sektöründe sıklıkla karşılaşılan yabancı madde hasarı (YAMAHA) sorununa karşılık yüksek emniyet seviyesi talep edilmektedir. Bu nedenle çalışmada, YAMAHA kapsamında gerçekleştirilen helikopter pali üzerine taş çarpması etkisi araştırılmaktadır. Palin gerçek boyutu göz önüne alınarak taş çarpması belirli bir kesit üzerine uygulanmaktadır ve palin sahip olduğu malzemeye göre göstermiş olduğu mekanik davranış incelenmektedir. Bu doğrultuda NACA-23012 profiline sahip olan Bo-105 helikopter pali referans alınmış olup palin 3B çizimi Solidworks programında yapılmıştır. Çalışmada havacılıkta sıklıkla tercih edilen metal ve kompozit malzemelerin taş çarpmasına karşı davranış özellikleri karşılaştırılmıştır. Bu amaçla çalışmada Al2024-T3 ve Karbon fiber takviyeli polimer (CFRP) tercih edilmiştir. İki malzemenin farkını gözlemlemek üzere aynı geometri ve koşullarda spanı 140 mm ve veteri 310 mm boyutlarına sahip iki pal kesiti üzerine düşük hızlı darbe analizi gerçekleştirilmiştir. Simüle edilen eylemin analizi LS-DYNA programı kullanılarak elde edilmiştir. Mekanik bir eylem olması gerekçesiyle buna uygun olarak Keyfi Lagrange (ALE) metodu kullanılmıştır. Bu metod kapsamında pale çarptırılacak olan taş, 5 mm boyutunda katı bir yapıda modellenmiş olup 3500 mm/s hızıyla pal yüzeyine çarptırılmıştır. Al2024-T3 malzemeye sahip pal kabuk olarak modellenirken CFRP malzemeli pal [0-90-0-90-0-90] açılarında altı katmandan oluşan kompozit part olarak modellenmiştir. Malzeme özellikleri Al2024-T3 ve CFRP için sırasıyla 018 Law Plasticity ve 54/55 Enchanced Composite Damage materyal kartları kullanılarak pal üzerine tanımlanmıştır. Gerçekleştirilen bu analiz sonucunda her iki malzemenin yer değiştirme, kinetik enerji ve kuvvet parametrelerinin zamana bağlı değişimleri incelenmiştir. Böylece havacılık teknolojisinde sıklıkla tercih edilen CFRP ve Al2024-T3 malzemelerinin düşük hızlı darbe karşısındaki mekanik özellikleri karşılaştırılmıştır.

Etik Beyan

Bu makale, ICAA'24 Uluslararası Havacılık ve Uzay Bilimleri Sempozyumu'nda sözlü olarak sunulan ancak tam metni yayınlanmayan “Low velocity impact response of CFRP and Al2024-T3 helicopter blade” başlıklı bildirinin içeriği geliştirilerek ve kısmen değiştirilerek üretilmiştir.

Kaynakça

  • Pulok, M. K. H., Aerodynamics and vibrations of a helicopter rotor blade, 2022. https://scholarworks.uno.edu/td/3022. (26 August 2024).
  • Sun, X. C. and Hallett, S. R. 2018. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos Part A Appl Sci Manuf, 104, 41-59.
  • Dağ, T., Güvenç, M. A. and Uyaner, M. 2024. Low velocity impact behavior of curved composite panels reinforced with different types of stiffeners used in air vehicle. Journal of Materials and Mechatronics: A, 5(1), 117-129.
  • Fries, J. The Effect of Helicopter Main Rotor Blade Damage on the Rotor Disk (Whole Rotor) Motion. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5068, 2000. https://apps.dtic.mil/sti/citations/ADA378211. (26 August 2024).
  • Chandra Naik, D. and Vijaya Kumar, R. 2018. Helicopter main rotor blade root end under high velocity bird impact. Mater Today Proc, 5(2), 4653-4668.
  • Işık, A. A., Structural optimization of composite helicopter rotor blades, 2018. https://open.metu.edu.tr/handle/11511/27294. (26 August 2024).
  • Torpan, R. and Zaharia, S.-M. 2024. Manufacturing process of helicopter tail rotor blades from composite materials using 3D-printed moulds. Applied Sciences, 14(3), 972.
  • Prakash, B. B., Deepthi, T. V. and Samudrala, N. 2022. Design and analysis of helicopter rotor blade. International Journal of Early Childhood Special Education (INT-JECS), 14(03), 10307-10315.
  • Sarasini, F. Low-velocity impact behaviour of hybrid composites, in: Thakur, V. K., Thakur, M. K., Pappu, A., Hybrid Polymer Composite Materials, Woodhead Publishing, Elsevier, 2017, 151-168.
  • Kaya, İ. and Çevik, M. 2023. Aluminum and carbon fiber reinforced polymer composite material comparative strength analysis of a structural part in F-16 fighter aircraft landing gear. The Journal of Defense Sciences, 43(2), 454-472.
  • Gupta, N. 2018. “Structural analysis of aircrafts wing made up of composite using finite element modelling”. Master thesis, National Institute of Technology Calicut, Calicutkerala, India.
  • Gao, T. et al. 2022. Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression. Compos Struct, 286, 115232.
  • Heimbs, S., Heller, S. and Middendorf, P. 2008. Simulation of low velocity impact on composite plates with compressive preload. 30 September-01 October, 7. LS-DYNA Anwenderforum, Bamberg, Germany.
  • Dağ, T., Yıldırım, N., Şentürk, G., Durmazoğlu, M., Yıldırım, S. and Uyaner, M. 2023. Virtual investigation on the response of glare to low velocity impact. 10th International Conference on Recent Advances in Air and Space Technologies (RAST), 07-09 June, Istanbul, Turkiye, 1–5.
  • Kovalovs, A., Barkanov, E., Ruchevskis, S. and Wesolowski, M. 2017. Optimisation methodology of a full-scale active twist rotor blade. Procedia Eng, 178, 85-95.
  • NACA 23012 12% (naca23012-il). http://airfoiltools.com/airfoil/details?airfoil=naca23012-il. (26 August 2024).
  • Rayhan, S. B. 2018. Finite element analysis of oblique bird strike on leading edge of aircraft wing. International Conference on Mechanical Engineering: Proceedings of the 12th International Conference on Mechanical Engineering (ICME 2017), AIP Conference Proceedings, 20-22 December, 1980(1), Dhaka, Bangladesh, 030009.
  • Tatlıer, M. S. and Baran, T. 2020. Structural and CFD analysis of an airfoil subjected to bird strike. European Journal of Mechanics - B/Fluids, 84, 478-486.

Low velocity impact response of CFRP and Al2024-T3 helicopter blade

Yıl 2024, Cilt: 5 Sayı: 2, 51 - 61, 31.12.2024

Öz

A high level of safety is demanded in response to the foreign object damage (FOD) problem frequently encountered in aviation. For this reason, in this study, the effect of stone impact on a helicopter blade performed within the scope of FOD is investigated. Considering the actual size of the propeller, a stone impact is applied to a certain section and the mechanical behavior of the propeller is examined according to the material type. In this direction, the Bo-105 helicopter blade with the NACA-23012 profile is taken as a reference, and a 3D drawing of the blade is made in the SolidWorks program. The behavioral properties of metal and composite materials frequently preferred in aviation against stone impact are compared. For this purpose, Al2024-T3 and carbon fiber reinforced polymer (CFRP) are selected. These materials are frequently preferred in aviation. To observe the difference between the materials, low-velocity impact analysis is performed on two blade sections with span dimensions of 140 mm and chord dimensions of 310 mm under the same geometry and conditions. The analysis of the simulated action is obtained using the LS-DYNA program. Because it is a mechanical action, the Arbitrary Lagrangian (ALE) method was used accordingly. Within the scope of this method, the stone to be hit by the blade was modeled as a 5 mm solid structure and hit the blade surface with a speed of 3500 mm/s. While the blade with Al2024-T3 material was modeled as a shell, the CFRP blade was modeled as a composite part consisting of six layers at [0-90-0-90-0-90] degrees. Material properties were defined on the blade using 018 Law Plasticity and 54/55 Enhanced Composite Damage material cards for Al2024-T3 and CFRP, respectively. As a result of this analysis, the time-dependent changes in displacement, kinetic energy, and force parameters were acquired. Then, the low-velocity impact responses of the CFRP and the Al2024-T3 blades were compared.

Etik Beyan

This article was produced by developing and partially modifying the content of the paper entitled “Low velocity impact response of CFRP and Al2024-T3 helicopter blade” which was presented orally at the ICAA’24 International Conference of Aeronautics and Astronautics Symposium but the full text was not published.

Kaynakça

  • Pulok, M. K. H., Aerodynamics and vibrations of a helicopter rotor blade, 2022. https://scholarworks.uno.edu/td/3022. (26 August 2024).
  • Sun, X. C. and Hallett, S. R. 2018. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Compos Part A Appl Sci Manuf, 104, 41-59.
  • Dağ, T., Güvenç, M. A. and Uyaner, M. 2024. Low velocity impact behavior of curved composite panels reinforced with different types of stiffeners used in air vehicle. Journal of Materials and Mechatronics: A, 5(1), 117-129.
  • Fries, J. The Effect of Helicopter Main Rotor Blade Damage on the Rotor Disk (Whole Rotor) Motion. Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5068, 2000. https://apps.dtic.mil/sti/citations/ADA378211. (26 August 2024).
  • Chandra Naik, D. and Vijaya Kumar, R. 2018. Helicopter main rotor blade root end under high velocity bird impact. Mater Today Proc, 5(2), 4653-4668.
  • Işık, A. A., Structural optimization of composite helicopter rotor blades, 2018. https://open.metu.edu.tr/handle/11511/27294. (26 August 2024).
  • Torpan, R. and Zaharia, S.-M. 2024. Manufacturing process of helicopter tail rotor blades from composite materials using 3D-printed moulds. Applied Sciences, 14(3), 972.
  • Prakash, B. B., Deepthi, T. V. and Samudrala, N. 2022. Design and analysis of helicopter rotor blade. International Journal of Early Childhood Special Education (INT-JECS), 14(03), 10307-10315.
  • Sarasini, F. Low-velocity impact behaviour of hybrid composites, in: Thakur, V. K., Thakur, M. K., Pappu, A., Hybrid Polymer Composite Materials, Woodhead Publishing, Elsevier, 2017, 151-168.
  • Kaya, İ. and Çevik, M. 2023. Aluminum and carbon fiber reinforced polymer composite material comparative strength analysis of a structural part in F-16 fighter aircraft landing gear. The Journal of Defense Sciences, 43(2), 454-472.
  • Gupta, N. 2018. “Structural analysis of aircrafts wing made up of composite using finite element modelling”. Master thesis, National Institute of Technology Calicut, Calicutkerala, India.
  • Gao, T. et al. 2022. Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression. Compos Struct, 286, 115232.
  • Heimbs, S., Heller, S. and Middendorf, P. 2008. Simulation of low velocity impact on composite plates with compressive preload. 30 September-01 October, 7. LS-DYNA Anwenderforum, Bamberg, Germany.
  • Dağ, T., Yıldırım, N., Şentürk, G., Durmazoğlu, M., Yıldırım, S. and Uyaner, M. 2023. Virtual investigation on the response of glare to low velocity impact. 10th International Conference on Recent Advances in Air and Space Technologies (RAST), 07-09 June, Istanbul, Turkiye, 1–5.
  • Kovalovs, A., Barkanov, E., Ruchevskis, S. and Wesolowski, M. 2017. Optimisation methodology of a full-scale active twist rotor blade. Procedia Eng, 178, 85-95.
  • NACA 23012 12% (naca23012-il). http://airfoiltools.com/airfoil/details?airfoil=naca23012-il. (26 August 2024).
  • Rayhan, S. B. 2018. Finite element analysis of oblique bird strike on leading edge of aircraft wing. International Conference on Mechanical Engineering: Proceedings of the 12th International Conference on Mechanical Engineering (ICME 2017), AIP Conference Proceedings, 20-22 December, 1980(1), Dhaka, Bangladesh, 030009.
  • Tatlıer, M. S. and Baran, T. 2020. Structural and CFD analysis of an airfoil subjected to bird strike. European Journal of Mechanics - B/Fluids, 84, 478-486.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Havacılık Yapıları
Bölüm Araştırma Makaleleri
Yazarlar

Sakine Kurtar 0000-0001-6837-0161

Gamze Yaman 0009-0003-7790-8594

Dilara Nur Bektaş 0009-0003-6733-0530

Seda Nur Özsunar 0009-0009-2205-0248

Mesut Uyaner 0000-0003-2743-2340

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 12 Kasım 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Kurtar, S., Yaman, G., Bektaş, D. N., Özsunar, S. N., vd. (2024). Low velocity impact response of CFRP and Al2024-T3 helicopter blade. International Journal of Aeronautics and Astronautics, 5(2), 51-61.
AMA Kurtar S, Yaman G, Bektaş DN, Özsunar SN, Uyaner M. Low velocity impact response of CFRP and Al2024-T3 helicopter blade. International Journal of Aeronautics and Astronautics. Aralık 2024;5(2):51-61.
Chicago Kurtar, Sakine, Gamze Yaman, Dilara Nur Bektaş, Seda Nur Özsunar, ve Mesut Uyaner. “Low Velocity Impact Response of CFRP and Al2024-T3 Helicopter Blade”. International Journal of Aeronautics and Astronautics 5, sy. 2 (Aralık 2024): 51-61.
EndNote Kurtar S, Yaman G, Bektaş DN, Özsunar SN, Uyaner M (01 Aralık 2024) Low velocity impact response of CFRP and Al2024-T3 helicopter blade. International Journal of Aeronautics and Astronautics 5 2 51–61.
IEEE S. Kurtar, G. Yaman, D. N. Bektaş, S. N. Özsunar, ve M. Uyaner, “Low velocity impact response of CFRP and Al2024-T3 helicopter blade”, International Journal of Aeronautics and Astronautics, c. 5, sy. 2, ss. 51–61, 2024.
ISNAD Kurtar, Sakine vd. “Low Velocity Impact Response of CFRP and Al2024-T3 Helicopter Blade”. International Journal of Aeronautics and Astronautics 5/2 (Aralık 2024), 51-61.
JAMA Kurtar S, Yaman G, Bektaş DN, Özsunar SN, Uyaner M. Low velocity impact response of CFRP and Al2024-T3 helicopter blade. International Journal of Aeronautics and Astronautics. 2024;5:51–61.
MLA Kurtar, Sakine vd. “Low Velocity Impact Response of CFRP and Al2024-T3 Helicopter Blade”. International Journal of Aeronautics and Astronautics, c. 5, sy. 2, 2024, ss. 51-61.
Vancouver Kurtar S, Yaman G, Bektaş DN, Özsunar SN, Uyaner M. Low velocity impact response of CFRP and Al2024-T3 helicopter blade. International Journal of Aeronautics and Astronautics. 2024;5(2):51-6.

International Journal of Aeronautics and Astronautics Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.