Araştırma Makalesi
BibTex RIS Kaynak Göster

Supersonic blowdown wind tunnel control using ABC optimized PID controller

Yıl 2025, Cilt: 6 Sayı: 1, 44 - 55, 30.06.2025
https://doi.org/10.55212/ijaa.1608374

Öz

Supersonic blowdown wind tunnels enable the testing of aircraft prototypes in the Mach 1.2 to 5 range, but these tunnels allow very limited test times due to their structure. In addition, once the wind tunnel system starts operating, the pressure in the tank where the air is stored changes constantly. This means that the parameters of the already nonlinear system dynamics are continually changing. To utilize this time effectively, fast-responding, stable and highly efficient controllers are needed. These controllers should be able to provide the required pressure in the settling chamber as fast as possible for the desired flow conditions in the test section. In these types of testbeds, Proportional-Integral-Derivative (PID) controllers are widely used because of their reliability, simplicity and ease of implementation. PID controllers can also provide fast and stable responses, as they can reduce the error, eliminate the steady-state error, and minimize the overshoot and oscillations. PID controllers only require the measurement of the error and the tuning of the coefficients, which can be performed manually or automatically. For a PID controller it is essential to optimize its coefficients to achieve the best performance and stability. There are different methods to tune a PID controller, such as trial and error, Ziegler-Nichols method, Cohen-Coon method, and optimization algorithms. This study proposes the use of an artificial bee colony in the optimization of PID coefficients used in the control of a supersonic blowdown wind tunnel. Because of complexity, an artificial bee colony is used to optimize PID coefficients with three different objective functions. The optimized coefficients are compared to gradient optimization results, and the best approach is determined.

Kaynakça

  • Surya, S. and Singh, D. B. 2019. Comparative study of P, PI, PD and PID controllers for operation of a pressure regulating valve in a blow-down wind tunnel. 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 11-12 August, Manipal, India, 1-3.
  • Braun, E., Lu, F., Panicker, P., Mitchell, R., Wilson, D. and Dutton, J. 2008. Supersonic blowdown wind tunnel control using LabVIEW. 46th AIAA aerospace sciences meeting and exhibit, 7-10 June, Nevada, USA, 1-14.
  • Hwang, D. S. and Hsu, P. L. 1998. A robust controller design for supersonic intermittent blowdown-type windtunnels. The Aeronautical Journal, 102(1013), 161-170.
  • Nae, C. A. 2013. Blowdown wind tunnel control using an adaptive fuzzy PI controller. Incas Bulletin, 5(3), 89-98.
  • SB, M. R. J., Poongodi, P. and LS, M. B. 2011. Fuzzy assisted PI controller for pressure regulation in a hypersonic wind tunnel. International Journal of Hybrid Information Technology, 4(1), 13-24.
  • Shahrbabaki, A. N., Bazazzadeh, M., Manshadi, M. D. and Shahriari, A. 2014. Designing a fuzzy logic controller for the Reynolds number in a blowdown supersonic wind tunnel. 2014 IEEE Aerospace Conference, 1-8 March, MT, USA, 1-12.
  • Shahrbabaki, A. N., Bazazzadeh, M., Shahriari, A. and Manshadi, M. D. 2014. Intelligent controller design for a blowdown supersonic wind tunnel. International Journal of Control and Automation, 7(1), 409-426.
  • Ilić, B., Miloš, M. and Isaković, J. 2017. Cascade nonlinear feedforward-feedback control of stagnation pressure in a supersonic blowdown wind tunnel. Measurement, 95, 424-438.
  • Nott, C. R., Ölçmen, S. M., Lewis, D. R. and Williams, K. 2008. Supersonic, variable-throat, blow-down wind tunnel control using genetic algorithms, neural networks, and gain scheduled PID. Applied Intelligence, 29, 79-89.
  • Naranjo, J. E., Serradilla, F. and Nashashibi, F. 2020. Speed control optimization for autonomous vehicles with metaheuristics. Electronics, 9(4), 551-565.
  • Pareek, S., Kishnani, M. and Gupta, R. 2014. Application of artificial bee colony optimization for optimal PID tuning. 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), 1-2 August, Unnao, India, 1-5.
  • Çiftçi, K., Çopur, E. H. and Bilgiç, H. H. 2024. ABC Algorithm Based System Identification Method for Three Degrees of Freedom Helicopter Model. 2024 32nd Signal Processing and Communications Applications Conference (SIU), 15-18 May, Mersin, Türkiye, 1-4.
  • Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks, 27 November-1 December, Western Australia, Australia, 1942-1948.
  • Blum, C. 2005. Ant colony optimization: introduction and recent trends. Physics of Life reviews, 2(4), 353-373.
  • Karaboga, D. and Basturk, B. 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459-471.
  • Karaboga, D. and Basturk, B. 2008. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697.
  • Bilgic, H. H., Sen, M. A. and Kalyoncu, M. 2016. Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm. Journal of Vibroengineering, 18(6), 3684-3694.
  • Reis, M. L. C. C., Falcão Filho, J. B. P. and Moraes, L. F. G. 2014. The TTP Transonic wind tunnel Mach number uniformity analysis. Measurement, 51, 356-366.
  • Korsten, M. and Regtien, P. 2003. Systematic and computer-assisted design of measurement systems. Measurement, 33(2), 145-156.
  • Ilić, B., Miloš, M., Milosavljević, M. and Isaković, J. 2016. Model-based stagnation pressure control in a supersonic wind tunnel. FME Transactions, 44(1), 1-9.
  • Von Lavante, E., Zachcial, A., Nath, B. and Dietrich, H. 2001. Unsteady effects in critical nozzles used for flow metering. Measurement, 29(1), 1-10.
  • Li, Y., Ang, K. H. and Chong, G. C. 2006. PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Köprücü, S. and Öztürk, M. 2024. Comparison of PID coefficients determination methods for aircraft pitch angle control. Aerospace Research Letters (ASREL), 3(1), 15-26.
  • Hsiao, Y. T., Chuang, C. L. and Chien, C. C. 2004. Ant colony optimization for designing of PID controllers. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), 2-4 September, Louisiana, USA, 321-326.
  • Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Computer Engineering Department, Engineering Faculty, Erciyes University, October, Kayseri, Turkey.
  • Kaveh, A. and Bakhshpoori, T. Metaheuristics: outlines, MATLAB codes and examples, First edition, Springer Nature, Switzerland, 2019.

ABC ile optimize edilmiş PID kontrolcü kullanarak sesüstü üflemeli rüzgar tünelinin kontrolü

Yıl 2025, Cilt: 6 Sayı: 1, 44 - 55, 30.06.2025
https://doi.org/10.55212/ijaa.1608374

Öz

Sesüstü üflemeli rüzgar tünelleri, Mach 1,2 ila 5 aralığında uçak prototiplerinin test edilmesini sağlar, ancak bu tüneller yapıları nedeniyle çok sınırlı test sürelerine izin verir. Ayrıca rüzgar tüneli sisteminin çalışmaya başlamasıyla birlikte havanın depolandığı tankın basıncı sürekli olarak değişmektedir. Bu da zaten doğrusal olmayan sistem dinamiğinin parametrelerinin sürekli olarak değişmesi anlamına gelmektedir. Bu problemlerle etkin bir şekilde başa çıkabilmek için hızlı tepki veren, kararlı ve yüksek verimli kontrolcülere ihtiyaç vardır. Bu kontrolcüler, test bölümünde istenen akış koşulları için dinlenme odasında gerekli basıncı mümkün olan en hızlı şekilde sağlayabilmelidir. Bu tür test yataklarında güvenilirlikleri, basitlikleri ve uygulama kolaylıkları nedeniyle Orantısal-İntegral-Türevsel (PID) kontrolcüler yaygın olarak kullanılmaktadır. PID kontrolcüler kararlı durum hatasını ortadan kaldırabilmeleri, aşım ve salınımları en aza indirebilmeleri gibi özellikleri ile hızlı ve kararlı yanıtlar sağlayabilirler. PID kontrolcüleri yalnızca hatanın ölçülmesini ve katsayıların ayarlanmasını gerektirir, bu da manuel veya otomatik olarak yapılabilir. Bir PID kontrolünde en iyi performansı ve kararlılığı elde etmek için katsayılarını optimize etmek çok önemlidir. Katsayıları belirlemek için Ziegler-Nichols yöntemi, Cohen-Coon yöntemi ve optimizasyon algoritmaları gibi farklı yöntemler kullanılmaktadır. Bu çalışma, bir sesüstü üflemeli rüzgar tünelinin kontrolünde kullanılan PID katsayılarının optimizasyonu için yapay arı kolonisi yönteminin kullanılmasını önermektedir. 3 farklı amaç fonksiyonu kullanılarak farklı PID katsayıları elde edilmiştir. Optimize edilen katsayılar gradyan optimizasyon sonuçlarıyla karşılaştırılmış ve en iyi yaklaşım belirlenmiştir.

Kaynakça

  • Surya, S. and Singh, D. B. 2019. Comparative study of P, PI, PD and PID controllers for operation of a pressure regulating valve in a blow-down wind tunnel. 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 11-12 August, Manipal, India, 1-3.
  • Braun, E., Lu, F., Panicker, P., Mitchell, R., Wilson, D. and Dutton, J. 2008. Supersonic blowdown wind tunnel control using LabVIEW. 46th AIAA aerospace sciences meeting and exhibit, 7-10 June, Nevada, USA, 1-14.
  • Hwang, D. S. and Hsu, P. L. 1998. A robust controller design for supersonic intermittent blowdown-type windtunnels. The Aeronautical Journal, 102(1013), 161-170.
  • Nae, C. A. 2013. Blowdown wind tunnel control using an adaptive fuzzy PI controller. Incas Bulletin, 5(3), 89-98.
  • SB, M. R. J., Poongodi, P. and LS, M. B. 2011. Fuzzy assisted PI controller for pressure regulation in a hypersonic wind tunnel. International Journal of Hybrid Information Technology, 4(1), 13-24.
  • Shahrbabaki, A. N., Bazazzadeh, M., Manshadi, M. D. and Shahriari, A. 2014. Designing a fuzzy logic controller for the Reynolds number in a blowdown supersonic wind tunnel. 2014 IEEE Aerospace Conference, 1-8 March, MT, USA, 1-12.
  • Shahrbabaki, A. N., Bazazzadeh, M., Shahriari, A. and Manshadi, M. D. 2014. Intelligent controller design for a blowdown supersonic wind tunnel. International Journal of Control and Automation, 7(1), 409-426.
  • Ilić, B., Miloš, M. and Isaković, J. 2017. Cascade nonlinear feedforward-feedback control of stagnation pressure in a supersonic blowdown wind tunnel. Measurement, 95, 424-438.
  • Nott, C. R., Ölçmen, S. M., Lewis, D. R. and Williams, K. 2008. Supersonic, variable-throat, blow-down wind tunnel control using genetic algorithms, neural networks, and gain scheduled PID. Applied Intelligence, 29, 79-89.
  • Naranjo, J. E., Serradilla, F. and Nashashibi, F. 2020. Speed control optimization for autonomous vehicles with metaheuristics. Electronics, 9(4), 551-565.
  • Pareek, S., Kishnani, M. and Gupta, R. 2014. Application of artificial bee colony optimization for optimal PID tuning. 2014 International Conference on Advances in Engineering & Technology Research (ICAETR-2014), 1-2 August, Unnao, India, 1-5.
  • Çiftçi, K., Çopur, E. H. and Bilgiç, H. H. 2024. ABC Algorithm Based System Identification Method for Three Degrees of Freedom Helicopter Model. 2024 32nd Signal Processing and Communications Applications Conference (SIU), 15-18 May, Mersin, Türkiye, 1-4.
  • Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. Proceedings of ICNN’95-International Conference on Neural Networks, 27 November-1 December, Western Australia, Australia, 1942-1948.
  • Blum, C. 2005. Ant colony optimization: introduction and recent trends. Physics of Life reviews, 2(4), 353-373.
  • Karaboga, D. and Basturk, B. 2007. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39, 459-471.
  • Karaboga, D. and Basturk, B. 2008. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8(1), 687-697.
  • Bilgic, H. H., Sen, M. A. and Kalyoncu, M. 2016. Tuning of LQR controller for an experimental inverted pendulum system based on the bees algorithm. Journal of Vibroengineering, 18(6), 3684-3694.
  • Reis, M. L. C. C., Falcão Filho, J. B. P. and Moraes, L. F. G. 2014. The TTP Transonic wind tunnel Mach number uniformity analysis. Measurement, 51, 356-366.
  • Korsten, M. and Regtien, P. 2003. Systematic and computer-assisted design of measurement systems. Measurement, 33(2), 145-156.
  • Ilić, B., Miloš, M., Milosavljević, M. and Isaković, J. 2016. Model-based stagnation pressure control in a supersonic wind tunnel. FME Transactions, 44(1), 1-9.
  • Von Lavante, E., Zachcial, A., Nath, B. and Dietrich, H. 2001. Unsteady effects in critical nozzles used for flow metering. Measurement, 29(1), 1-10.
  • Li, Y., Ang, K. H. and Chong, G. C. 2006. PID control system analysis and design. IEEE Control Systems Magazine, 26(1), 32-41.
  • Köprücü, S. and Öztürk, M. 2024. Comparison of PID coefficients determination methods for aircraft pitch angle control. Aerospace Research Letters (ASREL), 3(1), 15-26.
  • Hsiao, Y. T., Chuang, C. L. and Chien, C. C. 2004. Ant colony optimization for designing of PID controllers. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), 2-4 September, Louisiana, USA, 321-326.
  • Karaboga, D. 2005. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Computer Engineering Department, Engineering Faculty, Erciyes University, October, Kayseri, Turkey.
  • Kaveh, A. and Bakhshpoori, T. Metaheuristics: outlines, MATLAB codes and examples, First edition, Springer Nature, Switzerland, 2019.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uçak Performansı ve Uçuş Kontrol Sistemleri
Bölüm Araştırma Makaleleri
Yazarlar

Kıymet Nihal Nur Taş 0009-0002-2969-9647

Sultan Dinçsoy 0009-0006-4649-3308

Levent Can 0009-0008-9712-7759

Berna Tuğbay 0009-0006-6111-2200

Hasan Tabanlı 0000-0002-2269-0378

Muhammet Öztürk 0000-0002-0057-5205

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 27 Aralık 2024
Kabul Tarihi 30 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 1

Kaynak Göster

APA Taş, K. N. N., Dinçsoy, S., Can, L., … Tuğbay, B. (2025). Supersonic blowdown wind tunnel control using ABC optimized PID controller. International Journal of Aeronautics and Astronautics, 6(1), 44-55. https://doi.org/10.55212/ijaa.1608374
AMA Taş KNN, Dinçsoy S, Can L, Tuğbay B, Tabanlı H, Öztürk M. Supersonic blowdown wind tunnel control using ABC optimized PID controller. International Journal of Aeronautics and Astronautics. Haziran 2025;6(1):44-55. doi:10.55212/ijaa.1608374
Chicago Taş, Kıymet Nihal Nur, Sultan Dinçsoy, Levent Can, Berna Tuğbay, Hasan Tabanlı, ve Muhammet Öztürk. “Supersonic blowdown wind tunnel control using ABC optimized PID controller”. International Journal of Aeronautics and Astronautics 6, sy. 1 (Haziran 2025): 44-55. https://doi.org/10.55212/ijaa.1608374.
EndNote Taş KNN, Dinçsoy S, Can L, Tuğbay B, Tabanlı H, Öztürk M (01 Haziran 2025) Supersonic blowdown wind tunnel control using ABC optimized PID controller. International Journal of Aeronautics and Astronautics 6 1 44–55.
IEEE K. N. N. Taş, S. Dinçsoy, L. Can, B. Tuğbay, H. Tabanlı, ve M. Öztürk, “Supersonic blowdown wind tunnel control using ABC optimized PID controller”, International Journal of Aeronautics and Astronautics, c. 6, sy. 1, ss. 44–55, 2025, doi: 10.55212/ijaa.1608374.
ISNAD Taş, Kıymet Nihal Nur vd. “Supersonic blowdown wind tunnel control using ABC optimized PID controller”. International Journal of Aeronautics and Astronautics 6/1 (Haziran2025), 44-55. https://doi.org/10.55212/ijaa.1608374.
JAMA Taş KNN, Dinçsoy S, Can L, Tuğbay B, Tabanlı H, Öztürk M. Supersonic blowdown wind tunnel control using ABC optimized PID controller. International Journal of Aeronautics and Astronautics. 2025;6:44–55.
MLA Taş, Kıymet Nihal Nur vd. “Supersonic blowdown wind tunnel control using ABC optimized PID controller”. International Journal of Aeronautics and Astronautics, c. 6, sy. 1, 2025, ss. 44-55, doi:10.55212/ijaa.1608374.
Vancouver Taş KNN, Dinçsoy S, Can L, Tuğbay B, Tabanlı H, Öztürk M. Supersonic blowdown wind tunnel control using ABC optimized PID controller. International Journal of Aeronautics and Astronautics. 2025;6(1):44-55.

International Journal of Aeronautics and Astronautics Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.