İnceleme Makalesi
BibTex RIS Kaynak Göster

A Review: Electrochemistry in Nanomaterials

Yıl 2024, Sayı: 1, 105 - 126, 31.12.2024

Öz

Electrochemistry is a science in which highly complex systems are applied. For these applications, it is very important to use different chemicals and to create and apply ideal forms. In this review article, carbon-based nanomaterials and their application areas for electrochemical sensors are discussed. Carbon has its own applications in quite different areas. In this publication nanostructured materials are a hot topic of research. Electrochemical applications, catalytic applications, optical and biological labeling all benefit from nanomaterials. In electroactivity applications, nanowires, nanotubes, and nanocomposite materials are highly favored nano electroactive materials. Carbon nanomaterials are extremely compatible with highly active electrodes which have rapid catalytic activity. Thermotropic polymorphism is a property of certain fullerene derivatives. In terms of shape, fullerenes resemble an ellipsoid / hollow sphere. They have a caged frame and resemble a soccer ball in appearance. Electrons can be present in a variety of places. Also, in this study; carbon nanotubes are also mentioned. Electrosensors, electrocatalytic experiments, electrical circuits, and electrochemistry are just a few of their areas of excellence. Their conductivity and catalytic activity are also high. It has good solid stability and can participate in both covalent and non-covalent modifications. Due to these properties, it has become an important player in the electrochemical field. C60 molecules in the fullerene class is known as C60/QD hybrid nanorod, which contains 60 carbons. It has high solid stability properties and can take part in covalent and non-covalent modifications. The surface area of the electrodes is important in calculating the current. Au, Pt, or nickel bimetallic nanowires are used in anodic reactions. It is important to set the reference electrode potential to determine the electrode potential for nanomotors.

Kaynakça

  • C. Joachim, “To be nano or not to be nano?,” Nature Publishing Group, 2005, doi: 10.1038/nmat1319.
  • E. E. Altuner, M. Bekmezci, and F. Sen, “Manufacturing Techniques of Magnetic Polymer Nanocomposites,” Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, pp. 303–318, Jan. 2022, doi: 10.1007/978-3-030-90948-2_12.
  • V. Erduran, E. E. Altuner, and F. Şen, “Stability and validation of bionanomaterials,” Synthesis of Bionanomaterials for Biomedical Applications, pp. 251–263, Jan. 2023, doi: 10.1016/B978-0-323-91195-5.00021-0.
  • M. Bekmezci, E. E. Altuner, and F. Sen, “Biological Characterization of Magnetic Hybrid Nanoalloys,” Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, pp. 1–18, 2022, doi: 10.1007/978-3-030-34007-0_28-1.
  • J. P. Reithmaier, P. Petkov, W. Kulisch, and C. Popov, Eds., “Nanostructured Materials for Advanced Technological Applications,” 2009, doi: 10.1007/978-1-4020-9916-8.
  • W. Kulisch et al., “Nanostructured Materials For Advanced Technological Applications: A Brief Introduction,” NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 3–34, 2009, doi: 10.1007/978-1-4020-9916-8_1.
  • Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • S. Eris, Z. Daşdelen, Y. Yıldız, and F. Sen, “Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation,” Int J Hydrogen Energy, vol. 43, no. 3, pp. 1337–1343, Jan. 2018, doi: 10.1016/j.ijhydene.2017.11.051.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int J Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, and F. Şen, “Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection,” Materials Science and Engineering C, vol. 99, pp. 951–956, Jun. 2019, doi: 10.1016/j.msec.2019.02.040.
  • S. Bozkurt et al., “A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles,” Anal Chim Acta, vol. 989, pp. 88–94, Oct. 2017, doi: 10.1016/j.aca.2017.07.051.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite,” J Mol Liq, vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” Journal of Nanoparticle Research, vol. 15, no. 10, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • F. Şen and G. Gökagaç, “Activity of carbon-supported platinum nanoparticles toward methanol oxidation reaction: Role of metal precursor and a new surfactant, tert-octanethiol,” Journal of Physical Chemistry C, vol. 111, no. 3, pp. 1467–1473, Jan. 2007, doi: 10.1021/jp065809y.
  • F. Şen, S. Şen, and G. Gökaǧaç, “Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol,” Physical Chemistry Chemical Physics, vol. 13, no. 4, pp. 1676–1684, Jan. 2011, doi: 10.1039/c0cp01212b.
  • N. Korkmaz, Y. Ceylan, P. Taslimi, A. Karadağ, A. S. Bülbül, and F. Şen, “Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity,” Advanced Powder Technology, vol. 31, no. 7, pp. 2942–2950, Jul. 2020, doi: 10.1016/J.APT.2020.05.020.
  • H. Sert et al., “Monodisperse Mw-Pt NPs@VC as Highly Efficient and Reusable Adsorbents for Methylene Blue Removal,” J Clust Sci, vol. 27, no. 6, pp. 1953–1962, Nov. 2016, doi: 10.1007/s10876-016-1054-3.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J Biotechnol, vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/j.jbiotec.2017.09.012.
  • Z. Daşdelen, Y. Yıldız, S. Eriş, and F. Şen, “Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction,” Appl Catal B, vol. 219, pp. 511–516, 2017, doi: 10.1016/j.apcatb.2017.08.014.
  • J. Yin, G. Zhu, and B. Deng, “Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment,” J Memb Sci, vol. 437, pp. 237–248, Jun. 2013, doi: 10.1016/j.memsci.2013.03.021.
  • B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane,” Int J Hydrogen Energy, vol. 42, no. 36, pp. 23292–23298, Sep. 2017, doi: 10.1016/j.ijhydene.2017.06.032.
  • A. Savk et al., “Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid,” Materials Science and Engineering C, vol. 99, pp. 248–254, Jun. 2019, doi: 10.1016/j.msec.2019.01.113.
  • H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater Chem Phys, vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, and F. Şen, “Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB,” Int J Hydrogen Energy, vol. 41, no. 13, pp. 5661–5669, 2016, doi: 10.1016/j.ijhydene.2016.02.061.
  • H. Pamuk, B. Aday, F. Şen, and M. Kaya, “Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives,” RSC Adv, vol. 5, no. 61, pp. 49295–49300, 2015, doi: 10.1039/c5ra06441d.
  • Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, and F. Şen, “Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation,” Int J Hydrogen Energy, vol. 42, no. 18, pp. 13061–13069, May 2017, doi: 10.1016/j.ijhydene.2017.03.230.
  • B. Sen, E. Kuyuldar, A. Şavk, H. Calimli, S. Duman, and F. Sen, “Monodisperse ruthenium–copper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB,” Int J Hydrogen Energy, vol. 44, no. 21, pp. 10744–10751, Apr. 2019, doi: 10.1016/j.ijhydene.2019.02.176.
  • B. Aday, H. Pamuk, M. Kaya, and F. Sen, “Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives,” J Nanosci Nanotechnol, vol. 16, no. 6, pp. 6498–6504, Jun. 2016, doi: 10.1166/jnn.2016.12432.
  • H. G. Bilgicli et al., “Composites of palladium nanoparticles and graphene oxide as a highly active and reusable catalyst for the hydrogenation of nitroarenes,” Microporous and Mesoporous Materials, vol. 296, Apr. 2020, doi: 10.1016/j.micromeso.2020.110014.
  • H. Goksu, Y. Yildiz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal Sci Technol, vol. 6, no. 7, pp. 2318–2324, Apr. 2016, doi: 10.1039/c5cy01462j.
  • E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures and Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.018.
  • E. E. Altuner et al., “Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model,” Chemical Engineering Research and Design, May 2022, doi: 10.1016/J.CHERD.2022.05.021.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int J Hydrogen Energy, May 2022, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • Y. Wu et al., “Synthesis of novel activated carbon-supported trimetallic Pt–Ru–Ni nanoparticles using wood chips as efficient catalysts for the hydrogen generation from NaBH4 and enhanced photodegradation on methylene blue,” Int J Hydrogen Energy, Aug. 2022, doi: 10.1016/J.IJHYDENE.2022.07.152.
  • S. Ozdemir, Z. Turkan, E. Kilinc, E. E. Altuner, and F. Sen, “Anoxybacillus flavithermus loaded ɣ-Fe2O3 magnetic nanoparticles as an efficient magnetic sorbent for the preconcentrations of Cu(II) and Mn(II),” Food and Chemical Toxicology, vol. 168, p. 113334, Oct. 2022, doi: 10.1016/J.FCT.2022.113334.
  • C. N. R. Rao, A. Müller, and A. K. Cheetham, “Nanomaterials - An Introduction,” in The Chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 1–11. doi: 10.1002/352760247x.ch1.
  • D. Voiry et al., “Best Practices for Reporting Electrocatalytic Performance of Nanomaterials,” Oct. 23, 2018, American Chemical Society. doi: 10.1021/acsnano.8b07700.
  • M. Bekmezci, E. E. Altuner, V. Erduran, R. Bayat, I. Isik, and F. Şen, “Fundamentals of electrochemistry,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 1–15, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00023-8.
  • N. Doner, H. Burhan, R. Bayat, E. Esra Altuner, and F. Sen, “Energy Generation through Thermopower Waves using Multi-walled Carbon Nanotube Yarn,” Fuel, vol. 331, p. 125906, Jan. 2023, doi: 10.1016/J.FUEL.2022.125906.
  • D. Tang, B. Su, J. Tang, J. Ren, and G. Chen, “Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads,” Anal Chem, vol. 82, no. 4, pp. 1527–1534, Feb. 2010, doi: 10.1021/ac902768f.
  • S. J. Phang and L. L. Tan, “Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications,” Catal Sci Technol, vol. 9, no. 21, pp. 5882–5905, Oct. 2019, doi: 10.1039/C9CY01452G.
  • L. Lin, Y. Luo, P. Tsai, J. Wang, and X. Chen, “Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications,” TrAC, Trends Anal. Chem., vol. 103, pp. 87–101, 2018.
  • L. Yuwen et al., “Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells,” Nanoscale, vol. 8, pp. 2720–2726, 2016.
  • M. A. Y. Al Janabi et al., “Hydrogen Generation by Methanolysis of NaBH4 via Efficient CuFe2O4 Nanoparticle Catalyst: A Kinetic Study and DNN Model,” Top Catal, vol. 67, no. 9–12, pp. 843–852, May 2024, doi: 10.1007/S11244-024-01904-0/FIGURES/7.
  • R. Darabi et al., “Hexamethylenetetramine-based nanomaterial synthesis, characterization, investigation of photocatalytic activity against Rhodamine B dye and kinetic study for hydrogen fuel production,” Fuel, vol. 352, p. 128841, Nov. 2023, doi: 10.1016/J.FUEL.2023.128841.
  • S. Özdemir, Z. Turkan, E. Kılınc, E. E. Altuner, and F. Sen, “Bioaccumulation, resistance, and remediation of Mn(II) and Cu(II) and their impacts on antioxidant enzymes of Anoxybacillus flavithermus,” International Journal of Environmental Science and Technology, vol. 20, no. 10, pp. 10823–10834, Oct. 2023, doi: 10.1007/S13762-023-05133-Y/FIGURES/8.
  • J. Jiu and K. Suganuma, “Metallic nanowires and their application,” IEEE Trans Compon Packaging Manuf Technol, vol. 6, no. 12, pp. 1733–1751, Dec. 2016, doi: 10.1109/TCPMT.2016.2581829.
  • E. E. Altuner, M. Akin, R. Bayat, M. Bekmezci, H. Burhan, and F. Sen, “Challenges in commercialization of carbon nanomaterial-based sensors,” Carbon Nanomaterials-Based Sensors, pp. 381–392, Jan. 2022, doi: 10.1016/B978-0-323-91174-0.00020-2.
  • E. E. Altuner, M. Bekmezci, R. Bayat, M. Akin, I. Isik, and F. Şen, “Dendrimer-based nanocomposites for alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 337–352, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00007-X.
  • E. E. Altuner, T. Gur, and F. Şen, “Ternary/quaternary nanomaterials for direct alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 157–172, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00001-9.
  • E. E. Altuner, T. Gur, and F. Şen, “Ternary/quaternary nanomaterials for direct alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 157–172, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00001-9.
  • E. E. Altuner, M. Akin, R. Bayat, M. Bekmezci, H. Burhan, and F. Sen, “Challenges in commercialization of carbon nanomaterial-based sensors,” Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications, pp. 381–392, Jan. 2022, doi: 10.1016/B978-0-323-91174-0.00020-2.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278. [57] T. Nakanishi et al., “Electron transport and electrochemistry of mesomorphic fullerenes with long-range ordered lamellae,” J Am Chem Soc, vol. 130, no. 29, pp. 9236–9237, Jul. 2008, doi: 10.1021/ja803593j.
  • H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985, doi: 10.1038/318162a0.
  • M. C. Parker and C. Jeynes, “Fullerene Stability by Geometrical Thermodynamics,” ChemistrySelect, vol. 5, no. 1, pp. 5–14, Jan. 2020, doi: 10.1002/SLCT.201903633.
  • O. V. Kharissova, B. I. Kharisov, and E. G. De Casas Ortiz, “Dispersion of carbon nanotubes in water and non-aqueous solvents,” RSC Adv, vol. 3, no. 47, pp. 24812–24852, Nov. 2013, doi: 10.1039/C3RA43852J.
  • M. Deza and M. Dutour, “Zigzag structures of simple two-faced polyhedra,” Combin. Probab. Comput., vol. 14, no. 1–2, pp. 31–57, Jan. 2005, doi: 10.1017/s0963548304006583.
  • G. Brinkmann and A. W. M. Dress, “A constructive enumeration of fullerenes,” J. Algorithms, vol. 23, no. 2, pp. 345–358, 1997, doi: 10.1006/jagm.1996.0806.
  • M. Deza and M. Dutour Sikirić, “Geometry of chemical graphs: polycycles and two-faced maps,” Jun. 26, 2008, Cambridge Univ. Press. doi: 10.1017/cbo9780511721311.
  • M. Deza, M. D. Sikirić, and M. I. Shtogrin, “Fullerenes and disk-fullerenes,” Russian Mathematical Surveys, vol. 68, no. 4, pp. 665–720, Jan. 2013, doi: 10.1070/RM2013V068N04ABEH004850/XML.
  • G. Brinkmann and N. Van Cleemput, “Classification and generation of nanocones,” Discrete Appl. Math., vol. 159, no. 15, pp. 1528–1539, Sep. 2011, doi: 10.1016/j.dam.2011.06.014.
  • V. M. Buchstaber, “Ring of simple polytopes and differential equations,” Proc. Steklov Inst. Math., vol. 263, no. 1, pp. 13–37, Dec. 2008, doi: 10.1134/s0081543808040032.
  • O. Delgado-Friedrichs and M. O’Keeffe, “On a simple tiling of Deza and Shtogrin,” Acta Crystallogr. Sect. A, vol. 62, no. 3, pp. 228–229, May 2006, doi: 10.1107/s0108767306007641.
  • D. M., D. M., and F. P. W., “Zigzags, railroads, and knots in fullerenes,” J. Chem. Inf. Comput. Sci., vol. 44, no. 4, pp. 1282–1293, Sep. 2004, doi: 10.1002/chin.200439199.
  • M. Dutour Sikirić, M. Deza, and M. Shtogrin, “Filling of a given boundary by p-gons and related problem,” Discrete Appl. Math., vol. 156, no. 9, pp. 1518–1535, May 2008, doi: 10.1016/j.dam.2006.11.020.
  • M. Deza, M. D. Sikirić, and M. Shtogrin, “Diamond and related nanostructures,” 2013, Chemistry and Physics 6 Springer. doi: 10.1007/978-94-007-6371-5_13.
  • Y. Kim et al., “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific Publishing Co., 2010, pp. 63–69. doi: 10.1142/9789814317665_0009.
  • J. Wang, “Carbon-Nanotube Based Electrochemical Biosensors: A Review,” Electroanalysis, vol. 17, no. 1, pp. 7–14, Jan. 2005, doi: 10.1002/elan.200403113.
  • G. Hyun et al., “Unveiling the Electronic Structure of ZnO-C60 Core-Shell Quantum Dots: The Origin of Efficient Electron Transport,” Journal of Physical Chemistry C, vol. 121, no. 22, pp. 12230–12235, Jun. 2017, doi: 10.1021/acs.jpcc.7b02725.
  • A. R. Puente Santiago, O. Fernandez-Delgado, A. shley Gomez, M. Ariful Ahsan, and L. Echegoyen, “Fullerenes as Key Components for Low-Dimensional (Photo)electrocatalytic Nanohybrid Materials”, doi: 10.1002/anie.202009449.
  • A. R. Puente Santiago, O. Fernandez-Delgado, A. shley Gomez, M. Ariful Ahsan, and L. Echegoyen, “Fullerenes as Key Components for Low-Dimensional (Photo)electrocatalytic Nanohybrid Materials”, doi: 10.1002/anie.202009449.
  • N. F. Goldshleger, “Fullerenes and Fullerene-based materials in catalysis,” Fullerene Science and Technology, vol. 9, no. 3, pp. 255–280, May 2007, doi: 10.1081/FST-100104493.
  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991, doi: 10.1038/354056a0.
  • S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993, doi: 10.1038/363603a0.
  • E. E. Tkalya, M. Ghislandi, G. de With, and C. E. Koning, “The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites,” Curr. Opin. Colloid Interface Sci., vol. 17, pp. 225–232, 2012.
  • M. Xu, D. N. Futaba, M. Yumura, and K. Hata, “Carbon Nanotubes with Temperature-Invariant Creep and Creep-Recovery from −190 to 970 °C,” Advanced Materials, vol. 23, no. 32, pp. 3686–3691, Aug. 2011, doi: 10.1002/adma.201101412.
  • K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, “Elastomeric Thermal Interface Materials with High Through-Plane Thermal Conductivity from Carbon Fiber Fillers Vertically Aligned by Electrostatic Flocking,” Advanced Materials, vol. 26, no. 33, pp. 5857–5862, Sep. 2014, doi: 10.1002/adma.201401736.
  • C. Gao, P. Feng, S. Peng, and C. Shuai, “Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair,” Acta Biomater, vol. 61, pp. 1–20, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.05.020.
  • F. Yang et al., “Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts,” J Am Chem Soc, vol. 137, no. 27, pp. 8688–8691, Jul. 2015, doi: 10.1021/jacs.5b04403.
  • F. Yang et al., “Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts,” Nature, vol. 510, no. 7506, pp. 522–524, Jun. 2014, doi: 10.1038/nature13434.
  • A. Khalid, A. Abdel-Karim, M. Ali Atieh, S. Javed, and G. McKay, “PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor,” Sep Purif Technol, vol. 190, pp. 165–176, 2018, doi: 10.1016/j.seppur.2017.08.055.
  • N. Baig, M. Sajid, and T. A. Saleh, “Recent trends in nanomaterial-modified electrodes for electroanalytical applications,” Feb. 01, 2019, Elsevier B.V. doi: 10.1016/j.trac.2018.11.044.
  • N. Baig, M. Sajid, and T. A. Saleh, “Recent trends in nanomaterial-modified electrodes for electroanalytical applications,” Feb. 01, 2019, Elsevier B.V. doi: 10.1016/j.trac.2018.11.044.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Mar. 2006, American Chemical Society . doi: 10.1021/cr050569o.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Mar. 2006, American Chemical Society . doi: 10.1021/cr050569o.
  • G. Başkaya et al., “Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes,” Biosens Bioelectron, vol. 91, pp. 728–733, May 2017, doi: 10.1016/j.bios.2017.01.045.
  • S. Muhammad Imran et al., “Carbon Nanotube-Based Thermoplastic Polyurethane-Poly (methyl methacrylate) Nanocomposites for Pressure Sensing Applications,” 2016, doi: 10.1002/pen.24333.
  • X. Guo, D. J. Guo, J. S. Wang, X. P. Qiu, L. Q. Chen, and W. T. Zhu, “Using phosphomolybdic acid (H3PMo12O40) to efficiently enhance the electrocatalytic activity and CO-tolerance of platinum nanoparticles supported on multi-walled carbon nanotubes catalyst in acidic medium,” Journal of Electroanalytical Chemistry, vol. 638, no. 1, pp. 167–172, Jan. 2010, doi: 10.1016/j.jelechem.2009.09.001.
  • P. Gopal and T. M. Reddy, “Fabrication of carbon-based nanomaterial composite electrochemical sensor for the monitoring of terbutaline in pharmaceutical formulations,” Colloids Surf A Physicochem Eng Asp, vol. 538, pp. 600–609, Feb. 2018, doi: 10.1016/j.colsurfa.2017.11.059.
  • E. Demir, B. Sen, and F. Sen, “Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells,” Nano-Structures and Nano-Objects, vol. 11, pp. 39–45, Jul. 2017, doi: 10.1016/j.nanoso.2017.06.003.
  • M. S. Nas, E. Kuyuldar, B. Demirkan, M. H. Calimli, O. Demirbaş, and F. Sen, “Magnetic nanocomposites decorated on multiwalled carbon nanotube for removal of Maxilon Blue 5G using the sono-Fenton method,” Sci Rep, vol. 9, no. 1, pp. 1–11, Dec. 2019, doi: 10.1038/s41598-019-47393-0.
  • W. Bao, N. Zhang, P. Feng, H. Wu, and X. Zhu, “Time and species dependent ambient air’s effects on carbon clusters generated during femtosecond laser ablation of highly oriented pyrolytic graphite,” European Physical Journal D, vol. 69, no. 12, Dec. 2015, doi: 10.1140/EPJD/E2015-60161-1.
  • C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Appl Phys A Mater Sci Process, vol. 72, no. 5, pp. 573–580, 2001, doi: 10.1007/S003390100761/METRICS.
  • S. Arepalli, “Laser Ablation Process for Single-Walled Carbon Nanotube Production,” J Nanosci Nanotechnol, vol. 4, no. 4, pp. 317–325, Apr. 2004, doi: 10.1166/JNN.2004.072.
  • T. Maruyama, “Carbon Nanotube Growth Mechanisms,” Handbook of Carbon Nanotubes, pp. 1–31, 2021, doi: 10.1007/978-3-319-70614-6_53-1.
  • S. Dixit and A. K. Shukla, “Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature,” Appl Phys A Mater Sci Process, vol. 124, no. 6, Jun. 2018, doi: 10.1007/S00339-018-1826-8.
  • Y. Hanaoka, F. Takebe, Y. Nodasaka, I. Hara, H. Matsuyama, and I. Yumoto, “Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells,” PLoS One, vol. 8, no. 10, p. e76862, Oct. 2013, doi: 10.1371/journal.pone.0076862.
  • M. Keidar and A. M. Waas, “On the conditions of carbon nanotube growth in the arc discharge,” Nanotechnology, vol. 15, no. 11, p. 1571, Oct. 2004, doi: 10.1088/0957-4484/15/11/034.
  • J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors,” Science (1979), vol. 287, no. 5453, pp. 622–625, Jan. 2000, doi: 10.1126/SCIENCE.287.5453.622.
  • A. Buldum and J. P. Lu, “Electron field emission properties of closed carbon nanotubes,” Phys. Rev. Lett., vol. 91, no. 23, p. 236801, 2003, doi: 10.1103/physrevlett.91.236801.
  • H. Gao et al., “Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes,” Appl. Phys. Lett., vol. 83, no. 16, p. 3389, Oct. 2003, doi: 10.1063/1.1620675.
  • K. Balasubramanian and M. Burghard, “Chemically functionalized carbon nanotubes,” Small, vol. 1, no. 2, pp. 180–192, Feb. 2005, doi: 10.1002/smll.200400118.
  • S. Ahmed, A. Aitani, F. Rahman, A. Al-Dawood, and F. Al-Muhaish, “Decomposition of hydrocarbons to hydrogen and carbon,” Appl Catal A Gen, vol. 359, no. 1–2, pp. 1–24, May 2009, doi: 10.1016/J.APCATA.2009.02.038.
  • S. Heinze, J. Tersoff, and P. Avouris, “Electrostatic engineering of nanotube transistors for improved performance,” Appl Phys Lett, vol. 83, no. 24, pp. 5038–5040, Dec. 2003, doi: 10.1063/1.1632531.
  • J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, Mar. 2007, doi: 10.1038/nature05545.
  • R. Kleingeld, J. Wang, and M. Lein, “Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT,” Polyhedron, vol. 114, pp. 110–117, Aug. 2016, doi: 10.1016/j.poly.2015.11.016.
  • V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, “Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures,” Chem Rev, vol. 115, no. 11, pp. 4744–4822, Jun. 2015, doi: 10.1021/CR500304F.
  • V. Ganesh, M. Shkir, S. Alfaify, H. Algarni, M. M. Abutalib, and I. S. Yahia, “Remarkable effect of Ni2+doping on structural, second harmonic generation, optical, mechanical and dielectric properties of KDP single crystals,” Physica B Condens Matter, vol. 491, pp. 1–11, Jun. 2016, doi: 10.1016/j.physb.2016.03.004.
  • Z. Li, Z. Liu, H. Sun, and C. Gao, “Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene,” Chem Rev, vol. 115, no. 15, pp. 7046–7117, Aug. 2015, doi: 10.1021/ACS.CHEMREV.5B00102.
  • E. V. Raksha et al., “Carbon Nanoparticles from Thermally Expanded Cointercalates of Graphite Nitrate with Organic Substances,” Springer Proceedings in Materials, vol. 41, pp. 38–47, 2024, doi: 10.1007/978-3-031-52239-0_4.
  • N. Elavarasu, S. Karuppusamy, S. Muralidharan, M. Anantharaja, and R. Gopalakrishnan, “Fabrication and performance study of electro-optical modulator and third order nonlinearity using unidirectional method (Sankaranarayanan-Ramasamy) grown Imidazolium l-Tartrate (0 1 0) single crystal,” Opt Mater (Amst), vol. 46, pp. 141–148, Aug. 2015, doi: 10.1016/j.optmat.2015.03.060.
  • Chrobak, M. Maliński, and J. Zakrzewski, “Simultaneous determination of the thermal diffusivity and a drum factor for CdBeMnTe crystals with the photoacoustic method,” Thermochim Acta, vol. 606, pp. 84–89, Apr. 2015, doi: 10.1016/j.tca.2015.03.014.
  • B. P. Woodall et al., “Skeletal muscle-specific G protein-coupled receptor kinase 2 ablation alters isolated skeletal muscle mechanics and enhances clenbuterol-stimulated hypertrophy,” Journal of Biological Chemistry, vol. 291, no. 42, pp. 21913–21924, Oct. 2016, doi: 10.1074/jbc.M116.721282.
  • H. Eraki et al., “Magnetization Plateaus of a Double Fullerene Core/Shell Like-Nanostructure in an External Magnetic Field: Monte Carlo Study,” Jordan Journal of Physics, vol. 16, no. 4, pp. 435–445, Oct. 2023, doi: 10.47011/16.4.6.
  • A. Y. S. Tan et al., “2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens,” Biosens Bioelectron, vol. 219, Jan. 2023, doi: 10.1016/j.bios.2022.114811.
  • A. K. Geim and K. S. Novoselov, “The rise of graphene,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific Publishing Co., 2009, pp. 11–19. doi: 10.1142/9789814287005_0002.
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev Mod Phys, vol. 81, no. 1, pp. 109–162, Jan. 2009, doi: 10.1103/RevModPhys.81.109.
  • Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, “Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance,” J Am Chem Soc, vol. 136, no. 11, pp. 4394–4403, Mar. 2014, doi: 10.1021/ja500432h.
  • H. Nishihara and T. Kyotani, “Templated Nanocarbons for Energy Storage,” Advanced Materials, vol. 24, no. 33, pp. 4473–4498, Aug. 2012, doi: 10.1002/adma.201201715.
  • J. Zhang et al., “Homogeneous silver nanoparticles decorated 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials,” Carbon N Y, vol. 165, pp. 404–411, Sep. 2020, doi: 10.1016/j.carbon.2020.04.043.
  • Y. Cui and M. Zhang, “Fabrication of cross-linked carbon nanotube foam using polymethylmethacrylate microspheres as templates,” J Mater Chem A Mater, vol. 1, no. 44, pp. 13984–13988, Oct. 2013, doi: 10.1039/c3ta13065g.
  • D. N. Futaba et al., “Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes,” Nat Mater, vol. 5, no. 12, pp. 987–994, Dec. 2006, doi: 10.1038/nmat1782.
  • Y. Zhang and H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Appl Phys Lett, vol. 77, no. 19, pp. 3015–3017, Nov. 2000, doi: 10.1063/1.1324731.
  • J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “General method for extended metal nanowire synthesis: Ethanol induced self-assembly,” Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17158–17162, Nov. 2007, doi: 10.1021/jp0768120.
  • A. Pal, S. Shah, and S. Devi, “Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent,” Mater Chem Phys, vol. 114, no. 2–3, pp. 530–532, Apr. 2009, doi: 10.1016/j.matchemphys.2008.11.056.
  • V. Lazarescu, R. Scurtu, M. F. Lazarescu, E. Santos, H. Jones, and W. Schmickler, “Field effects and surface states in second harmonic generation at n-GaAs(h k l) electrodes,” Electrochim Acta, vol. 50, no. 25-26 SPEC. ISS., pp. 4830–4836, Sep. 2005, doi: 10.1016/j.electacta.2005.02.069.
  • M. Koç Keşir and M. D. Yılmaz, “Potato peel carbon dots produced via fixed bed pyrolysis reactor decorated 1-D TiO2 nanorods for rapid removal of methylene blue, Cr (VI), Escherichia coli, and Aspergillus niger,” Ind Crops Prod, vol. 220, p. 119244, Nov. 2024, doi: 10.1016/J.INDCROP.2024.119244.
  • T. F. M. Y. SH Yu, “Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization,” J Magn Magn Mater, vol. 256, pp. 420–424, 2003.
  • J. G. S. Moo, C. C. Mayorga-Martinez, H. Wang, B. Khezri, W. Z. Teo, and M. Pumera, “Nano/Microrobots Meet Electrochemistry,” Adv Funct Mater, vol. 27, no. 12, Mar. 2017, doi: 10.1002/adfm.201604759.
  • J. G. S. Moo, C. C. Mayorga-Martinez, H. Wang, B. Khezri, W. Z. Teo, and M. Pumera, “Nano/Microrobots Meet Electrochemistry,” Adv Funct Mater, vol. 27, no. 12, Mar. 2017, doi: 10.1002/adfm.201604759.
  • R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher, “Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold,” J Catal, vol. 253, no. 1, pp. 132–138, Jan. 2008, doi: 10.1016/J.JCAT.2007.10.017.
  • Y. Zhang et al., “New gold nanostructures for sensor applications: A review,” Materials, vol. 7, no. 7, pp. 5169–5201, 2014, doi: 10.3390/MA7075169.
  • H. Du Toit and M. Di Lorenzo, “Electrodeposited highly porous gold microelectrodes for the direct electrocatalytic oxidation of aqueous glucose,” Sens Actuators B Chem, vol. 192, pp. 725–729, Mar. 2014, doi: 10.1016/J.SNB.2013.11.017.
  • H. Jia, P. Gao, H. Ma, D. Wu, B. Du, and Q. Wei, “Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22,” Bioelectrochemistry, vol. 101, pp. 22–27, 2015, doi: 10.1016/J.BIOELECHEM.2014.06.012.
  • I. Venditti, “Engineered gold-based nanomaterials: Morphologies and functionalities in biomedical applications. a mini review,” Bioengineering, vol. 6, no. 2, Jun. 2019, doi: 10.3390/BIOENGINEERING6020053.
  • J. Biener, M. M. Biener, R. J. Madix, and C. M. Friend, “Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology,” ACS Catal, vol. 5, no. 11, pp. 6263–6270, Nov. 2015, doi: 10.1021/ACSCATAL.5B01586.
  • N. Jia, L. Cao, and Z. Wang, “Platinum-coated gold nanoporous film surface: Electrodeposition and enhanced electrocatalytic activity for methanol oxidation,” Langmuir, vol. 24, no. 11, pp. 5932–5936, Jun. 2008, doi: 10.1021/LA800163F.
  • M. Falk, Z. Blum, and S. Shleev, “Direct electron transfer based enzymatic fuel cells,” Electrochim Acta, vol. 82, pp. 191–202, Nov. 2012, doi: 10.1016/J.ELECTACTA.2011.12.133.
  • P. Bollella and L. Gorton, “Enzyme based amperometric biosensors,” Curr Opin Electrochem, vol. 10, pp. 157–173, Aug. 2018, doi: 10.1016/J.COELEC.2018.06.003.
  • P. Bollella, “Porous Gold: A New Frontier for Enzyme-Based Electrodes,” Nanomaterials 2020, Vol. 10, Page 722, vol. 10, no. 4, p. 722, Apr. 2020, doi: 10.3390/NANO10040722.
  • M. A. Dayton, J. C. Brown, K. J. Stutts, and R. M. Wightman, “Faradaic Electrochemistry at Microvoltammetric Electrodes,” Anal Chem, vol. 52, no. 6, pp. 946–950, May 1980, doi: 10.1021/AC50056A040/ASSET/AC50056A040.FP.PNG_V03.
  • R. M. Wightman, “Probing Cellular Chemistry in Biological Systems with Microelectrodes,” Science (1979), vol. 311, no. 5767, pp. 1570–1574, Mar. 2006, doi: 10.1126/SCIENCE.1120027.
  • E. Türkmen, “Glikoz Tayini için Bir Biyosensör Geliştirilmesi,” 2015.
  • G. Kiran Raj et al., “Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm,” Journal of Controlled Release, vol. 355, pp. 709–729, Mar. 2023, doi: 10.1016/j.jconrel.2023.02.017.
  • Y. Wu et al., “Cholesterol-substituted 3,4-ethylenedioxythiophene (EDOT-MA-cholesterol) and Poly(3,4-ethylenedioxythiophene) (PEDOT-MA-cholesterol),” Giant, vol. 15, Aug. 2023, doi: 10.1016/j.giant.2023.100163.
  • I. Uzieliene, A. Popov, R. Vaiciuleviciute, G. Kirdaite, E. Bernotiene, and A. Ramanaviciene, “Polypyrrole-based structures for activation of cellular functions under electrical stimulation,” Bioelectrochemistry, vol. 155, Feb. 2024, doi: 10.1016/j.bioelechem.2023.108585.
  • A. L. Loo, M. G. Pineda, H. Saade, M. E. Treviño, and R. G. López, “Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration,” in Journal of Materials Science, May 2008, pp. 3649–3654. doi: 10.1007/s10853-008-2581-6.
  • E. G. Pineda, L. A. Azpeitia, M. J. R. Presa, A. E. Bolzán, and C. A. Gervasi, “Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications,” Electrochim Acta, vol. 444, Mar. 2023, doi: 10.1016/j.electacta.2023.142011.
  • H. Kim, Y. Won, H. W. Song, Y. Kwon, M. Jun, and J. H. Oh, “Organic Mixed Ionic–Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms,” Advanced Science, vol. 11, no. 27, Jul. 2024, doi: 10.1002/ADVS.202306191.
  • O. Mergel, P. T. Kühn, S. Schneider, U. Simon, and F. A. Plamper, “Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes,” Electrochim Acta, vol. 232, pp. 98–105, Apr. 2017, doi: 10.1016/j.electacta.2017.02.102.
  • D. Premathilake, R. A. Outlaw, S. G. Parler, S. M. Butler, and J. R. Miller, “Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum,” Carbon N Y, vol. 111, pp. 231–237, Jan. 2017, doi: 10.1016/j.carbon.2016.09.080.
  • S. Bhaskara, T. Sakorikar, S. Chatterjee, K. V. Shabari Girishan, and H. J. Pandya, “Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review,” Sens Biosensing Res, vol. 36, Jun. 2022, doi: 10.1016/j.sbsr.2022.100483.
  • K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, and N. M. Markovic, “Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts,” Electrochim Acta, vol. 53, no. 7, pp. 3181–3188, Feb. 2008, doi: 10.1016/j.electacta.2007.11.057.
  • V. R. Stamenkovic et al., “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces,” Nat Mater, vol. 6, no. 3, pp. 241–247, Mar. 2007, doi: 10.1038/nmat1840.
  • J. Fan, S. S. Rezaie, M. Facchini-Rakovich, D. Gudi, C. Montemagno, and M. Gupta, “Tuning PEDOT:PSS conductivity to obtain complementary organic electrochemical transistor,” Org Electron, vol. 66, pp. 148–155, Mar. 2019, doi: 10.1016/j.orgel.2018.12.013.
  • K. Trzciński and A. Lisowska-Oleksiak, “Electrochemical characterization of a composite comprising PEDOT/PSS and N doped TiO2 performed in aqueous and non-aqueous electrolytes,” Synth Met, vol. 209, pp. 399–404, Nov. 2015, doi: 10.1016/j.synthmet.2015.08.026.
  • G. Schiavone, X. Kang, F. Fallegger, J. Gandar, G. Courtine, and S. P. Lacour, “Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation,” Neuron, vol. 108, no. 2, pp. 238–258, Oct. 2020, doi: 10.1016/j.neuron.2020.10.010.
  • K. Krukiewicz, T. Jarosz, A. P. Herman, R. Turczyn, S. Boncel, and J. K. Zak, “The effect of solvent on the synthesis and physicochemical properties of poly(3,4-ethylenedioxypyrrole),” Synth Met, vol. 217, pp. 231–236, Jul. 2016, doi: 10.1016/j.synthmet.2016.04.005.
  • L. C. Wang et al., “The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact,” Biosens Bioelectron, vol. 145, Dec. 2019, doi: 10.1016/j.bios.2019.111661.
  • Y. Pan, M. He, J. Wu, H. Qi, and Y. Cheng, “One-step synthesis of MXene-functionalized PEDOT:PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose,” Sens Actuators B Chem, vol. 401, Feb. 2024, doi: 10.1016/j.snb.2023.135055.
  • J. B. Schlenoff and H. Xu, “Evolution of Physical and Electrochemical Properties of Polypyrrole during Extended Oxidation,” J Electrochem Soc, vol. 139, no. 9, pp. 2397–2401, Sep. 1992, doi: 10.1149/1.2221238.
  • K. Krukiewicz, “Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: A mini review,” Electrochem commun, vol. 116, Jul. 2020, doi: 10.1016/j.elecom.2020.106742.
  • C. Horváth et al., “Polymer-based laminar probes with an ultra-long flexible spiral-shaped cable for in vivo neural recordings,” Sens Actuators B Chem, vol. 417, Oct. 2024, doi: 10.1016/j.snb.2024.136220.
  • S. Lee, K. Min, J. Jung, J. Yi, G. Tae, and J. Y. Lee, “Implantable conductive polymer bioelectrode with enzymatic antioxidant activity for enhanced tissue responses and in vivo performance,” Chemical Engineering Journal, vol. 494, Aug. 2024, doi: 10.1016/j.cej.2024.152861.
  • N. Mintz Hemed, F. J. Hwang, E. T. Zhao, J. B. Ding, and N. A. Melosh, “Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm2 area,” Biosens Bioelectron, vol. 261, Oct. 2024, doi: 10.1016/j.bios.2024.116474.
  • R. Bellamkonda, J. P. Ranieri, and P. Aebischer, “Laminin oligopeptide derivatized agarose gels allow three‐dimensional neurite extension in vitro,” J Neurosci Res, vol. 41, no. 4, pp. 501–509, 1995, doi: 10.1002/JNR.490410409.
  • R. Sanda et al., “Low-invasive neural recording in mouse models with diabetes via an ultrasmall needle-electrode,” Biosens Bioelectron, vol. 240, Nov. 2023, doi: 10.1016/j.bios.2023.115605.
  • W. Jin and G. Maduraiveeran, “Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies,” J Anal Sci Technol, vol. 9, no. 1, pp. 1–11, Dec. 2018, doi: 10.1186/S40543-018-0150-4/FIGURES/18.
  • P. S. Nnamchi and C. S. Obayi, “Electrochemical characterization of nanomaterials,” in Characterization of Nanomaterials: Advances and Key Technologies, Elsevier, 2018, pp. 103–127. doi: 10.1016/B978-0-08-101973-3.00004-3.
  • P. S. Nnamchi and C. S. Obayi, “Electrochemical characterization of nanomaterials,” in Characterization of Nanomaterials: Advances and Key Technologies, Elsevier, 2018, pp. 103–127. doi: 10.1016/B978-0-08-101973-3.00004-3.
  • M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells,” Jun. 07, 2012, Nature Publishing Group. doi: 10.1038/nature11115.
  • U. Lucia, “Overview on fuel cells,” Feb. 01, 2014, Elsevier Ltd. doi: 10.1016/j.rser.2013.09.025.
  • D. U. Sauer, J. Benz, B. Ortiz, W. Roth, and A. Steinhüser, “Fuel cells in photovoltaic hybrid systems for stand-alone power Supplies,” 2003.
  • V. R. Stamenkovic et al., “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability,” Science (1979), vol. 315, no. 5811, pp. 493–497, Jan. 2007, doi: 10.1126/science.1135941.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of nanoparticles,” Apr. 01, 2014, Wiley-VCH Verlag. doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of nanoparticles,” Apr. 01, 2014, Wiley-VCH Verlag. doi: 10.1002/anie.201306828.
  • S. M. Oja, M. Wood, and B. Zhang, “Nanoscale electrochemistry,” Jan. 15, 2013, American Chemical Society. doi: 10.1021/ac3031702.
  • S. M. Oja, Y. Fan, C. M. Armstrong, P. Defnet, and B. Zhang, “Nanoscale Electrochemistry Revisited,” Jan. 05, 2016, American Chemical Society. doi: 10.1021/acs.analchem.5b04542.
  • P. H. Robbs and N. V. Rees, “Nanoparticle electrochemistry,” Physical Chemistry Chemical Physics, vol. 18, no. 36, pp. 24812–24819, Sep. 2016, doi: 10.1039/c6cp05101d.
  • P. H. Robbs and N. V. Rees, “Nanoparticle electrochemistry,” Physical Chemistry Chemical Physics, vol. 18, no. 36, pp. 24812–24819, Sep. 2016, doi: 10.1039/c6cp05101d.
  • S. Chen and Y. Liu, “Electrochemistry at nanometer-sized electrodes,” Jan. 14, 2014, The Royal Society of Chemistry. doi: 10.1039/c3cp53773k.
  • S. Chen and Y. Liu, “Electrochemistry at nanometer-sized electrodes,” Jan. 14, 2014, The Royal Society of Chemistry. doi: 10.1039/c3cp53773k.
  • R. W. Murray, “Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores,” Chem Rev, vol. 108, no. 7, pp. 2688–2720, Jul. 2008, doi: 10.1021/CR068077E/ASSET/CR068077E.FP.PNG_V03.
  • J. C. Eklund, A. M. Bond, J. A. Alden, and R. G. Compton, “Perspectives in Modern Voltammetry: Basic Concepts and Mechanistic Analysis,” Adv Phys Org Chem, vol. 32, no. C, pp. 1–120, Jan. 1999, doi: 10.1016/S0065-3160(08)60006-4.
  • F. Karimi, E. E. Altuner, A. Aygun, R. Bayat, S. Rajendran, and F. Sen, “Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol,” Top Catal, vol. 67, no. 9–12, pp. 585–593, May 2024, doi: 10.1007/S11244-023-01887-4/TABLES/1.
  • T. Y. Uzumer, S. Cete, Y. Tekeli, and E. E. Altuner, “Development of an amperometric biosensor that can determine the amount of glucose in the blood using the glucose oxidase enzyme: Preparation of polyaniline–polypyrrole–poly(sodium-4-styrenesulfonate) film,” Biotechnol Appl Biochem, Aug. 2024, doi: 10.1002/BAB.2640.
  • C. G. Zoski, “Ultramicroelectrodes: Design, Fabrication, and Characterization”, doi: 10.1002/1521-4109(200208)14:15/16.
  • M. L. Longmire, M. Watanabe, H. Zhang, T. T. Wooster, and R. W. Murray, “Voltammetric Measurement of Ultraslow Diffusion Rates in Polymeric Media with Microdisk Electrodes,” Anal Chem, vol. 62, no. 7, pp. 747–752, Apr. 1990, doi: 10.1021/AC00206A020/ASSET/AC00206A020.FP.PNG_V03.
  • P. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino, and M. V. Mirkin, “Nanoelectrochemistry of mammalian cells,” Proc Natl Acad Sci U S A, vol. 105, no. 2, p. 443, Jan. 2008, doi: 10.1073/PNAS.0711075105.
  • J. Madden, “Development and characterisation of macro-disc and micro-band electrodes for electrochemical sensing applications,” 2022, University College Cork. Accessed: Sep. 03, 2024. [Online]. Available: https://hdl.handle.net/10468/14471
  • A. M. Bond, “Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review,” Analyst, vol. 119, no. 11, pp. 1R-21R, Jan. 1994, doi: 10.1039/AN994190001R.
  • V. Lotito and T. Zambelli, “Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists,” Adv Colloid Interface Sci, vol. 246, pp. 217–274, Aug. 2017, doi: 10.1016/J.CIS.2017.04.003.
  • M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, “Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties,” Langmuir, vol. 14, no. 19, pp. 5425–5429, Sep. 1998, doi: 10.1021/LA980557G.
  • I. An, H. V. Nguyen, A. R. Heyd, and R. W. Collins, “Simultaneous real‐time spectroscopic ellipsometry and reflectance for monitoring thin‐film preparation,” Review of Scientific Instruments, vol. 65, no. 11, pp. 3489–3500, Nov. 1994, doi: 10.1063/1.1144527.
  • T. Li and W. Hu, “Electrochemistry in nanoscopic volumes,” Nanoscale, vol. 3, no. 1, pp. 166–176, Jan. 2011, doi: 10.1039/C0NR00325E.
  • S. Ranganathan, R. Guo, and R. W. Murray, “Nanoparticle films as electrodes: Voltammetric sensitivity to the nanoparticle energy gap,” Langmuir, vol. 23, no. 13, pp. 7372–7377, Jun. 2007, doi: 10.1021/LA070008N/ASSET/IMAGES/LA070008N.SOCIAL.JPEG_V03.
  • R. H. Terrill et al., “Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters,” J Am Chem Soc, vol. 117, no. 50, pp. 12537–12548, Jan. 1995, doi: 10.1021/JA00155A017/ASSET/JA00155A017.FP.PNG_V03.
  • P. Cardenas Lopez et al., “Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation,” Nanoscale, vol. 14, no. 35, pp. 12928–12939, Sep. 2022, doi: 10.1039/D2NR02633C.
  • A. V. Walker et al., “The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers,” J Am Chem Soc, vol. 126, no. 12, pp. 3954–3963, Mar. 2004, doi: 10.1021/JA0395792/ASSET/IMAGES/MEDIUM/JA0395792N00001.GIF.
  • J. T. Cox and B. Zhang, “Nanoelectrodes: Recent advances and new directions,” Annual Review of Analytical Chemistry, vol. 5, no. Volume 5, 2012, pp. 253–272, Jul. 2012, doi: 10.1146/ANNUREV-ANCHEM-062011-143124/CITE/REFWORKS.
  • C. Kranz and C. Demaille, “Hybrid Scanning Electrochemical Techniques : Methods and Applications,” Scanning Electrochemical Microscopy, pp. 513–580, Jul. 2022, doi: 10.1201/9781003004592-17.
  • R.-J. Yu et al., “A Confined Nanopipette: From Fundamental to Application,” Confining Electrochemistry to Nanopores, pp. 162–209, Oct. 2020, doi: 10.1039/9781788013260-00162.
  • E. Kocaturk, T. Salan, O. Ozcelik, M. H. Alma, and Z. Candan, “Recent Advances in Lignin-Based Biofuel Production,” Energies 2023, Vol. 16, Page 3382, vol. 16, no. 8, p. 3382, Apr. 2023, doi: 10.3390/EN16083382.
  • S. A. Schulz et al., “Roadmap on photonic metasurfaces,” Appl Phys Lett, vol. 124, no. 26, Jun. 2024, doi: 10.1063/5.0204694/3300335/ROADMAP-ON-PHOTONIC-METASURFACES.
  • L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Directed placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl Phys Lett, vol. 80, no. 20, pp. 3826–3828, May 2002, doi: 10.1063/1.1481237.
  • M. Alizadeh et al., “An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode,” Chemosphere, vol. 309, p. 136566, Dec. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136566.
  • U. Bruno-Mota, “Electrochemical Fabrication and Characterization of Conical Tungsten Ultramicroelectrodes”.
  • A. Escarpa and M. A. Lo, “Environmental Analysis by Electrochemical Sensors and Biosensors,” vol. 2, pp. 615–650, 2014, doi: 10.1007/978-1-4939-0676-5.
  • S. Daniele and C. Bragato, “From Macroelectrodes to Microelectrodes: Theory and Electrode Properties,” pp. 373–401, 2014, doi: 10.1007/978-1-4939-0676-5_15.
  • İ. M. Öztürk, “Fine-Tuning Plasmonic Response for Plasmon-Enhanced Photonics,” 2023, Accessed: Sep. 05, 2024. [Online]. Available: https://open.metu.edu.tr/handle/11511/107754
  • D. della Scuola, C. Gaetano Granozzi Supervisore, and G. Andrea Rizzi, “Synthesis and Engineering of Easy&Cheap Silver Based Optical Sensors,” Jul. 2012, Accessed: Sep. 05, 2024. [Online]. Available: https://www.research.unipd.it/handle/11577/3422543
  • S. Bin Jaber, A. Hamilton, Y. Xu, M. E. Kartal, N. Gadegaard, and D. M. Mulvihill, “Friction of flat and micropatterned interfaces with nanoscale roughness,” Tribol Int, vol. 153, Jan. 2021, doi: 10.1016/J.TRIBOINT.2020.106563.
  • S. Bin Jaber, Y. Xu, M. E. Kartal, N. Gadegaard, and D. M. Mulvihill, “The static friction peak in reciprocating sliding,” Tribol Int, vol. 180, Feb. 2023, doi: 10.1016/J.TRIBOINT.2023.108240.
  • B. Koeninger, T. Koegl, T. Hensler, W. Arlt, and K. E. Wirth, “Solid distribution in fluidized and fixed beds with horizontal high speed gas jets,” Powder Technol, vol. 336, pp. 57–69, Aug. 2018, doi: 10.1016/j.powtec.2018.05.035.
  • L. Wang, G. Qi, M. Tao, X. Liu, M. Hassan, and H. Lu, “Simulated pulsed flow of gas and particles in a horizontal oppose-pulsed gas jets of bubbling fluidized bed,” Advanced Powder Technology, vol. 29, no. 12, pp. 3507–3519, Dec. 2018, doi: 10.1016/j.apt.2018.09.035.
  • L. Zhang, W. Liu, and Y. Zhang, “Calculation of teeter bed height of teetered bed separator based on jet theory,” Powder Technol, vol. 295, pp. 225–233, Jul. 2016, doi: 10.1016/j.powtec.2016.03.046.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • P. R. Bueno and C. Gabrielli, “Electrochemistry, Nanomaterials, and Nanostructures,” Springer, Boston, MA, 2009, pp. 81–149. doi: 10.1007/978-0-387-49323-7_3.
  • J. O. Bockris and S. U. M. Khan, Surface Electrochemistry: A Molecular Level Approach .
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/ANIE.201306828.
  • T. Nohira, K. Yasuda, and Y. Ito, “Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon,” Nature Materials 2003 2:6, vol. 2, no. 6, pp. 397–401, May 2003, doi: 10.1038/nmat900.
  • Z. Yang et al., “Electrochemical energy storage for green grid,” Chem Rev, vol. 111, no. 5, pp. 3577–3613, May 2011, doi: 10.1021/CR100290V.
  • W. Dreyer, C. Guhlke, and R. Müller, “Bulk-Surface Electrothermodynamics and Applications to Electrochemistry,” Entropy 2018, Vol. 20, Page 939, vol. 20, no. 12, p. 939, Dec. 2018, doi: 10.3390/E20120939.
  • J. Janek and W. G. Zeier, “A solid future for battery development,” Nat Energy, vol. 1, no. 9, Sep. 2016, doi: 10.1038/NENERGY.2016.141.
  • P. Sun and M. V. Mirkin, “Kinetics of electron-transfer reactions at nanoelectrodes,” Anal Chem, vol. 78, no. 18, pp. 6526–6534, Sep. 2006, doi: 10.1021/AC060924Q/SUPPL_FILE/AC060924QSI20060519_011144.PDF.
  • J. N. Janusz et al., “The Electrochemical Peroxydisulfate-Oxalate Autocatalytic Reaction,” J Am Chem Soc, 2024, doi: 10.1021/JACS.4C08080.
  • R. A. Durst, A. J. Bäumner, R. W. Murray, R. P. Buck, and C. P. Andrieux, “Chemically modified electrodes: Recommended terminology and definitions,” Pure and Appl. Chem, vol. 69, no. 6, p. 1317, 1997, doi: 10.1351/pac199769061317.
  • J. Clausmeyer and W. Schuhmann, “Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging,” May 01, 2016, Elsevier B.V. doi: 10.1016/j.trac.2016.01.018.
  • J. Clausmeyer and W. Schuhmann, “Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging,” May 01, 2016, Elsevier B.V. doi: 10.1016/j.trac.2016.01.018.
  • E. E. Altuner, V. C. Ozalp, M. D. Yilmaz, M. Bekmezci, and F. Sen, “High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox),” Chemosphere, vol. 292, p. 133429, Apr. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.133429.
  • E. E. Altuner et al., “Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles,” Chemosphere, p. 134077, Feb. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134077.
  • E. E. Altuner et al., “Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles,” Chemosphere, vol. 297, p. 134077, Jun. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134077.
  • H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater Chem Phys, vol. 250, p. 123042, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123042.
  • N. Li, Q. Li, X. Guo, M. Yuan, and H. Pang, “Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry,” Sep. 15, 2019, Elsevier B.V. doi: 10.1016/j.cej.2019.04.127.
  • M. A. Abrar, Y. Dong, P. K. Lee, and W. S. Kim, “Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles,” Sci Rep, vol. 6, no. 1, pp. 1–9, Jul. 2016, doi: 10.1038/srep30565.
  • V. Shashikala et al., “Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification,” J Mol Catal A Chem, vol. 268, no. 1–2, pp. 95–100, May 2007, doi: 10.1016/j.molcata.2006.10.019.
  • S. Qi, X. Li, Z. Zhang, and H. Dong, “Fabrication and characterisation of electro-brush plated nickel-graphene oxide nano-composite coatings,” Thin Solid Films, vol. 644, pp. 106–114, Dec. 2017, doi: 10.1016/j.tsf.2017.06.064.
  • J. Castelo-Quibén et al., “Carbon - iron electro-catalysts for CO2 reduction. The role of the iron particle size,” Journal of CO2 Utilization, vol. 24, pp. 240–249, Mar. 2018, doi: 10.1016/j.jcou.2018.01.007.
  • Q. H. Guo, J. S. Huang, and T. Y. You, “Electrospun palladium nanoparticle-loaded carbon nanofiber for methanol electro-oxidation,” Fenxi Huaxue/ Chinese Journal of Analytical Chemistry, vol. 41, no. 2, pp. 210–214, Feb. 2013, doi: 10.1016/S1872-2040(13)60629-5.
  • E. J. Menke, M. A. Thompson, C. Xiang, L. C. Yang, and R. M. Penner, “Lithographically patterned nanowire electrodeposition,” Nat Mater, vol. 5, no. 11, pp. 914–919, Nov. 2006, doi: 10.1038/nmat1759.
  • C. Xiang et al., “Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics,” ACS Nano, vol. 2, no. 9, pp. 1939–1949, Sep. 2008, doi: 10.1021/nn800394k.
  • M. T. Barako et al., “Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites,” ACS Appl Mater Interfaces, vol. 7, no. 34, pp. 19251–19259, Aug. 2015, doi: 10.1021/acsami.5b05147.
  • M. Arefpour, M. Almasi Kashi, F. Khansari Barzoki, M. Noormohammadi, and A. Ramazani, “Electrodeposited metal nanowires as transparent conductive electrodes: Their release conditions, electrical conductivity, optical transparency and chemical stability,” Mater Des, vol. 157, pp. 326–336, Nov. 2018, doi: 10.1016/j.matdes.2018.07.048.
  • P. C. Liu, K. J. Zhu, Y. F. Gao, H. G. Luo, and L. Lu, “Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication,” Adv Energy Mater, vol. 7, no. 23, p. 1700547, Dec. 2017, doi: 10.1002/aenm.201700547.
  • D. Mariotti and R. M. Sankaran, “Microplasmas for nanomaterials synthesis,” Aug. 18, 2010, IOP Publishing. doi: 10.1088/0022-3727/43/32/323001.

Bir İnceleme: Nanomalzemelerde Elektrokimya

Yıl 2024, Sayı: 1, 105 - 126, 31.12.2024

Öz

Elektrokimya, oldukça karmaşık sistemlerin uygulandığı bir bilimdir. Bu uygulamalar için farklı kimyasallar kullanmak ve ideal formlar oluşturup uygulamak çok önemlidir. Bu derleme makalede, karbon bazlı nanomalzemeler ve elektrokimyasal sensörler için uygulama alanları tartışılmaktadır. Karbonun oldukça farklı alanlarda kendi uygulamaları vardır. Bu yayında nanoyapılı malzemeler sıcak bir araştırma konusudur. Elektrokimyasal uygulamalar, katalitik uygulamalar, optik ve biyolojik etiketlemelerin tümü nanomalzemelerden faydalanır. Elektroaktivite uygulamalarında nanoteller, nanotüpler ve nanokompozit malzemeler oldukça tercih edilen nano elektroaktif malzemelerdir. Karbon nanomalzemeler, hızlı katalitik aktiviteye sahip oldukça aktif elektrotlarla son derece uyumludur. Termotropik polimorfizm, belirli fulleren türevlerinin bir özelliğidir. Şekil açısından, fullerenler bir elipsoid / içi boş küreye benzer. Kafesli bir çerçeveye sahiptirler ve görünüş olarak bir futbol topuna benzerler. Elektronlar çeşitli yerlerde bulunabilir. Ayrıca, bu çalışmada; karbon nanotüplerden de bahsedilmektedir. Elektrosensörler, elektrokatalitik deneyler, elektrik devreleri ve elektrokimya, mükemmellik alanlarından sadece birkaçıdır. İletkenlikleri ve katalitik aktiviteleri de yüksektir. İyi katı kararlılığa sahiptir ve hem kovalent hem de kovalent olmayan modifikasyonlara katılabilir. Bu özellikleri nedeniyle elektrokimyasal alanda önemli bir oyuncu haline gelmiştir. Fulleren sınıfındaki C60 molekülleri, 60 karbon içeren C60/QD hibrit nanorod olarak bilinir. Yüksek katı kararlılık özelliklerine sahiptir ve kovalent ve kovalent olmayan modifikasyonlara katılabilir. Elektrotların yüzey alanı, akımı hesaplamada önemlidir. Au, Pt veya nikel bimetalik nanoteller anot reaksiyonlarında kullanılır. Nanomotorlar için elektrot potansiyelini belirlemek için referans elektrot potansiyelini ayarlamak önemlidir.

Kaynakça

  • C. Joachim, “To be nano or not to be nano?,” Nature Publishing Group, 2005, doi: 10.1038/nmat1319.
  • E. E. Altuner, M. Bekmezci, and F. Sen, “Manufacturing Techniques of Magnetic Polymer Nanocomposites,” Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, pp. 303–318, Jan. 2022, doi: 10.1007/978-3-030-90948-2_12.
  • V. Erduran, E. E. Altuner, and F. Şen, “Stability and validation of bionanomaterials,” Synthesis of Bionanomaterials for Biomedical Applications, pp. 251–263, Jan. 2023, doi: 10.1016/B978-0-323-91195-5.00021-0.
  • M. Bekmezci, E. E. Altuner, and F. Sen, “Biological Characterization of Magnetic Hybrid Nanoalloys,” Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, pp. 1–18, 2022, doi: 10.1007/978-3-030-34007-0_28-1.
  • J. P. Reithmaier, P. Petkov, W. Kulisch, and C. Popov, Eds., “Nanostructured Materials for Advanced Technological Applications,” 2009, doi: 10.1007/978-1-4020-9916-8.
  • W. Kulisch et al., “Nanostructured Materials For Advanced Technological Applications: A Brief Introduction,” NATO Science for Peace and Security Series B: Physics and Biophysics, pp. 3–34, 2009, doi: 10.1007/978-1-4020-9916-8_1.
  • Y. Yildiz et al., “Highly Monodisperse Pt/Rh Nanoparticles Confined in the Graphene Oxide for Highly Efficient and Reusable Sorbents for Methylene Blue Removal from Aqueous Solutions,” ChemistrySelect, vol. 2, no. 2, pp. 697–701, Jan. 2017, doi: 10.1002/slct.201601608.
  • S. Eris, Z. Daşdelen, Y. Yıldız, and F. Sen, “Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation,” Int J Hydrogen Energy, vol. 43, no. 3, pp. 1337–1343, Jan. 2018, doi: 10.1016/j.ijhydene.2017.11.051.
  • B. Sen, B. Demirkan, A. Şavk, S. Karahan Gülbay, and F. Sen, “Trimetallic PdRuNi nanocomposites decorated on graphene oxide: A superior catalyst for the hydrogen evolution reaction,” Int J Hydrogen Energy, vol. 43, no. 38, pp. 17984–17992, Sep. 2018, doi: 10.1016/j.ijhydene.2018.07.122.
  • R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, and F. Şen, “Use of the monodisperse Pt/Ni@rGO nanocomposite synthesized by ultrasonic hydroxide assisted reduction method in electrochemical nonenzymatic glucose detection,” Materials Science and Engineering C, vol. 99, pp. 951–956, Jun. 2019, doi: 10.1016/j.msec.2019.02.040.
  • S. Bozkurt et al., “A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles,” Anal Chim Acta, vol. 989, pp. 88–94, Oct. 2017, doi: 10.1016/j.aca.2017.07.051.
  • A. Şavk, H. Aydın, K. Cellat, and F. Şen, “A novel high performance non-enzymatic electrochemical glucose biosensor based on activated carbon-supported Pt-Ni nanocomposite,” J Mol Liq, vol. 300, p. 112355, Feb. 2020, doi: 10.1016/j.molliq.2019.112355.
  • F. Şen, G. Gökağaç, and S. Şen, “High performance Pt nanoparticles prepared by new surfactants for C 1 to C3 alcohol oxidation reactions,” Journal of Nanoparticle Research, vol. 15, no. 10, Oct. 2013, doi: 10.1007/s11051-013-1979-5.
  • F. Şen and G. Gökagaç, “Activity of carbon-supported platinum nanoparticles toward methanol oxidation reaction: Role of metal precursor and a new surfactant, tert-octanethiol,” Journal of Physical Chemistry C, vol. 111, no. 3, pp. 1467–1473, Jan. 2007, doi: 10.1021/jp065809y.
  • F. Şen, S. Şen, and G. Gökaǧaç, “Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol,” Physical Chemistry Chemical Physics, vol. 13, no. 4, pp. 1676–1684, Jan. 2011, doi: 10.1039/c0cp01212b.
  • N. Korkmaz, Y. Ceylan, P. Taslimi, A. Karadağ, A. S. Bülbül, and F. Şen, “Biogenic nano silver: Synthesis, characterization, antibacterial, antibiofilms, and enzymatic activity,” Advanced Powder Technology, vol. 31, no. 7, pp. 2942–2950, Jul. 2020, doi: 10.1016/J.APT.2020.05.020.
  • H. Sert et al., “Monodisperse Mw-Pt NPs@VC as Highly Efficient and Reusable Adsorbents for Methylene Blue Removal,” J Clust Sci, vol. 27, no. 6, pp. 1953–1962, Nov. 2016, doi: 10.1007/s10876-016-1054-3.
  • B. Şahin, E. Demir, A. Aygün, H. Gündüz, and F. Şen, “Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line,” J Biotechnol, vol. 260, pp. 79–83, Oct. 2017, doi: 10.1016/j.jbiotec.2017.09.012.
  • Z. Daşdelen, Y. Yıldız, S. Eriş, and F. Şen, “Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction,” Appl Catal B, vol. 219, pp. 511–516, 2017, doi: 10.1016/j.apcatb.2017.08.014.
  • J. Yin, G. Zhu, and B. Deng, “Multi-walled carbon nanotubes (MWNTs)/polysulfone (PSU) mixed matrix hollow fiber membranes for enhanced water treatment,” J Memb Sci, vol. 437, pp. 237–248, Jun. 2013, doi: 10.1016/j.memsci.2013.03.021.
  • B. Sen, S. Kuzu, E. Demir, S. Akocak, and F. Sen, “Highly monodisperse RuCo nanoparticles decorated on functionalized multiwalled carbon nanotube with the highest observed catalytic activity in the dehydrogenation of dimethylamine−borane,” Int J Hydrogen Energy, vol. 42, no. 36, pp. 23292–23298, Sep. 2017, doi: 10.1016/j.ijhydene.2017.06.032.
  • A. Savk et al., “Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid,” Materials Science and Engineering C, vol. 99, pp. 248–254, Jun. 2019, doi: 10.1016/j.msec.2019.01.113.
  • H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater Chem Phys, vol. 250, p. 123042, Aug. 2020, doi: 10.1016/j.matchemphys.2020.123042.
  • B. Çelik, G. Başkaya, H. Sert, Ö. Karatepe, E. Erken, and F. Şen, “Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB,” Int J Hydrogen Energy, vol. 41, no. 13, pp. 5661–5669, 2016, doi: 10.1016/j.ijhydene.2016.02.061.
  • H. Pamuk, B. Aday, F. Şen, and M. Kaya, “Pt NPs@GO as a highly efficient and reusable catalyst for one-pot synthesis of acridinedione derivatives,” RSC Adv, vol. 5, no. 61, pp. 49295–49300, 2015, doi: 10.1039/c5ra06441d.
  • Y. Yıldız, S. Kuzu, B. Sen, A. Savk, S. Akocak, and F. Şen, “Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation,” Int J Hydrogen Energy, vol. 42, no. 18, pp. 13061–13069, May 2017, doi: 10.1016/j.ijhydene.2017.03.230.
  • B. Sen, E. Kuyuldar, A. Şavk, H. Calimli, S. Duman, and F. Sen, “Monodisperse ruthenium–copper alloy nanoparticles decorated on reduced graphene oxide for dehydrogenation of DMAB,” Int J Hydrogen Energy, vol. 44, no. 21, pp. 10744–10751, Apr. 2019, doi: 10.1016/j.ijhydene.2019.02.176.
  • B. Aday, H. Pamuk, M. Kaya, and F. Sen, “Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives,” J Nanosci Nanotechnol, vol. 16, no. 6, pp. 6498–6504, Jun. 2016, doi: 10.1166/jnn.2016.12432.
  • H. G. Bilgicli et al., “Composites of palladium nanoparticles and graphene oxide as a highly active and reusable catalyst for the hydrogenation of nitroarenes,” Microporous and Mesoporous Materials, vol. 296, Apr. 2020, doi: 10.1016/j.micromeso.2020.110014.
  • H. Goksu, Y. Yildiz, B. Çelik, M. Yazici, B. Kilbas, and F. Sen, “Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of a reduced graphene oxide furnished platinum nanocatalyst,” Catal Sci Technol, vol. 6, no. 7, pp. 2318–2324, Apr. 2016, doi: 10.1039/c5cy01462j.
  • E. Demir, A. Savk, B. Sen, and F. Sen, “A novel monodisperse metal nanoparticles anchored graphene oxide as Counter Electrode for Dye-Sensitized Solar Cells,” Nano-Structures and Nano-Objects, vol. 12, pp. 41–45, Oct. 2017, doi: 10.1016/j.nanoso.2017.08.018.
  • E. E. Altuner et al., “Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model,” Chemical Engineering Research and Design, May 2022, doi: 10.1016/J.CHERD.2022.05.021.
  • Y. Wu et al., “Hydrogen generation from methanolysis of sodium borohydride using waste coffee oil modified zinc oxide nanoparticles and their photocatalytic activities,” Int J Hydrogen Energy, May 2022, doi: 10.1016/J.IJHYDENE.2022.04.177.
  • Y. Wu et al., “Synthesis of novel activated carbon-supported trimetallic Pt–Ru–Ni nanoparticles using wood chips as efficient catalysts for the hydrogen generation from NaBH4 and enhanced photodegradation on methylene blue,” Int J Hydrogen Energy, Aug. 2022, doi: 10.1016/J.IJHYDENE.2022.07.152.
  • S. Ozdemir, Z. Turkan, E. Kilinc, E. E. Altuner, and F. Sen, “Anoxybacillus flavithermus loaded ɣ-Fe2O3 magnetic nanoparticles as an efficient magnetic sorbent for the preconcentrations of Cu(II) and Mn(II),” Food and Chemical Toxicology, vol. 168, p. 113334, Oct. 2022, doi: 10.1016/J.FCT.2022.113334.
  • C. N. R. Rao, A. Müller, and A. K. Cheetham, “Nanomaterials - An Introduction,” in The Chemistry of Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, 2005, pp. 1–11. doi: 10.1002/352760247x.ch1.
  • D. Voiry et al., “Best Practices for Reporting Electrocatalytic Performance of Nanomaterials,” Oct. 23, 2018, American Chemical Society. doi: 10.1021/acsnano.8b07700.
  • M. Bekmezci, E. E. Altuner, V. Erduran, R. Bayat, I. Isik, and F. Şen, “Fundamentals of electrochemistry,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 1–15, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00023-8.
  • N. Doner, H. Burhan, R. Bayat, E. Esra Altuner, and F. Sen, “Energy Generation through Thermopower Waves using Multi-walled Carbon Nanotube Yarn,” Fuel, vol. 331, p. 125906, Jan. 2023, doi: 10.1016/J.FUEL.2022.125906.
  • D. Tang, B. Su, J. Tang, J. Ren, and G. Chen, “Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads,” Anal Chem, vol. 82, no. 4, pp. 1527–1534, Feb. 2010, doi: 10.1021/ac902768f.
  • S. J. Phang and L. L. Tan, “Recent advances in carbon quantum dot (CQD)-based two dimensional materials for photocatalytic applications,” Catal Sci Technol, vol. 9, no. 21, pp. 5882–5905, Oct. 2019, doi: 10.1039/C9CY01452G.
  • L. Lin, Y. Luo, P. Tsai, J. Wang, and X. Chen, “Metal ions doped carbon quantum dots: Synthesis, physicochemical properties, and their applications,” TrAC, Trends Anal. Chem., vol. 103, pp. 87–101, 2018.
  • L. Yuwen et al., “Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells,” Nanoscale, vol. 8, pp. 2720–2726, 2016.
  • M. A. Y. Al Janabi et al., “Hydrogen Generation by Methanolysis of NaBH4 via Efficient CuFe2O4 Nanoparticle Catalyst: A Kinetic Study and DNN Model,” Top Catal, vol. 67, no. 9–12, pp. 843–852, May 2024, doi: 10.1007/S11244-024-01904-0/FIGURES/7.
  • R. Darabi et al., “Hexamethylenetetramine-based nanomaterial synthesis, characterization, investigation of photocatalytic activity against Rhodamine B dye and kinetic study for hydrogen fuel production,” Fuel, vol. 352, p. 128841, Nov. 2023, doi: 10.1016/J.FUEL.2023.128841.
  • S. Özdemir, Z. Turkan, E. Kılınc, E. E. Altuner, and F. Sen, “Bioaccumulation, resistance, and remediation of Mn(II) and Cu(II) and their impacts on antioxidant enzymes of Anoxybacillus flavithermus,” International Journal of Environmental Science and Technology, vol. 20, no. 10, pp. 10823–10834, Oct. 2023, doi: 10.1007/S13762-023-05133-Y/FIGURES/8.
  • J. Jiu and K. Suganuma, “Metallic nanowires and their application,” IEEE Trans Compon Packaging Manuf Technol, vol. 6, no. 12, pp. 1733–1751, Dec. 2016, doi: 10.1109/TCPMT.2016.2581829.
  • E. E. Altuner, M. Akin, R. Bayat, M. Bekmezci, H. Burhan, and F. Sen, “Challenges in commercialization of carbon nanomaterial-based sensors,” Carbon Nanomaterials-Based Sensors, pp. 381–392, Jan. 2022, doi: 10.1016/B978-0-323-91174-0.00020-2.
  • E. E. Altuner, M. Bekmezci, R. Bayat, M. Akin, I. Isik, and F. Şen, “Dendrimer-based nanocomposites for alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 337–352, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00007-X.
  • E. E. Altuner, T. Gur, and F. Şen, “Ternary/quaternary nanomaterials for direct alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 157–172, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00001-9.
  • E. E. Altuner, T. Gur, and F. Şen, “Ternary/quaternary nanomaterials for direct alcohol fuel cells,” Nanomaterials for Direct Alcohol Fuel Cells, pp. 157–172, Jan. 2021, doi: 10.1016/B978-0-12-821713-9.00001-9.
  • E. E. Altuner, M. Akin, R. Bayat, M. Bekmezci, H. Burhan, and F. Sen, “Challenges in commercialization of carbon nanomaterial-based sensors,” Carbon Nanomaterials-Based Sensors: Emerging Research Trends in Devices and Applications, pp. 381–392, Jan. 2022, doi: 10.1016/B978-0-323-91174-0.00020-2.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278.
  • J. Ni and Y. Li, “Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage,” Adv Energy Mater, vol. 6, no. 17, p. 1600278, Sep. 2016, doi: 10.1002/aenm.201600278. [57] T. Nakanishi et al., “Electron transport and electrochemistry of mesomorphic fullerenes with long-range ordered lamellae,” J Am Chem Soc, vol. 130, no. 29, pp. 9236–9237, Jul. 2008, doi: 10.1021/ja803593j.
  • H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, no. 6042, pp. 162–163, 1985, doi: 10.1038/318162a0.
  • M. C. Parker and C. Jeynes, “Fullerene Stability by Geometrical Thermodynamics,” ChemistrySelect, vol. 5, no. 1, pp. 5–14, Jan. 2020, doi: 10.1002/SLCT.201903633.
  • O. V. Kharissova, B. I. Kharisov, and E. G. De Casas Ortiz, “Dispersion of carbon nanotubes in water and non-aqueous solvents,” RSC Adv, vol. 3, no. 47, pp. 24812–24852, Nov. 2013, doi: 10.1039/C3RA43852J.
  • M. Deza and M. Dutour, “Zigzag structures of simple two-faced polyhedra,” Combin. Probab. Comput., vol. 14, no. 1–2, pp. 31–57, Jan. 2005, doi: 10.1017/s0963548304006583.
  • G. Brinkmann and A. W. M. Dress, “A constructive enumeration of fullerenes,” J. Algorithms, vol. 23, no. 2, pp. 345–358, 1997, doi: 10.1006/jagm.1996.0806.
  • M. Deza and M. Dutour Sikirić, “Geometry of chemical graphs: polycycles and two-faced maps,” Jun. 26, 2008, Cambridge Univ. Press. doi: 10.1017/cbo9780511721311.
  • M. Deza, M. D. Sikirić, and M. I. Shtogrin, “Fullerenes and disk-fullerenes,” Russian Mathematical Surveys, vol. 68, no. 4, pp. 665–720, Jan. 2013, doi: 10.1070/RM2013V068N04ABEH004850/XML.
  • G. Brinkmann and N. Van Cleemput, “Classification and generation of nanocones,” Discrete Appl. Math., vol. 159, no. 15, pp. 1528–1539, Sep. 2011, doi: 10.1016/j.dam.2011.06.014.
  • V. M. Buchstaber, “Ring of simple polytopes and differential equations,” Proc. Steklov Inst. Math., vol. 263, no. 1, pp. 13–37, Dec. 2008, doi: 10.1134/s0081543808040032.
  • O. Delgado-Friedrichs and M. O’Keeffe, “On a simple tiling of Deza and Shtogrin,” Acta Crystallogr. Sect. A, vol. 62, no. 3, pp. 228–229, May 2006, doi: 10.1107/s0108767306007641.
  • D. M., D. M., and F. P. W., “Zigzags, railroads, and knots in fullerenes,” J. Chem. Inf. Comput. Sci., vol. 44, no. 4, pp. 1282–1293, Sep. 2004, doi: 10.1002/chin.200439199.
  • M. Dutour Sikirić, M. Deza, and M. Shtogrin, “Filling of a given boundary by p-gons and related problem,” Discrete Appl. Math., vol. 156, no. 9, pp. 1518–1535, May 2008, doi: 10.1016/j.dam.2006.11.020.
  • M. Deza, M. D. Sikirić, and M. Shtogrin, “Diamond and related nanostructures,” 2013, Chemistry and Physics 6 Springer. doi: 10.1007/978-94-007-6371-5_13.
  • Y. Kim et al., “A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: Fullerene solar cells,” in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific Publishing Co., 2010, pp. 63–69. doi: 10.1142/9789814317665_0009.
  • J. Wang, “Carbon-Nanotube Based Electrochemical Biosensors: A Review,” Electroanalysis, vol. 17, no. 1, pp. 7–14, Jan. 2005, doi: 10.1002/elan.200403113.
  • G. Hyun et al., “Unveiling the Electronic Structure of ZnO-C60 Core-Shell Quantum Dots: The Origin of Efficient Electron Transport,” Journal of Physical Chemistry C, vol. 121, no. 22, pp. 12230–12235, Jun. 2017, doi: 10.1021/acs.jpcc.7b02725.
  • A. R. Puente Santiago, O. Fernandez-Delgado, A. shley Gomez, M. Ariful Ahsan, and L. Echegoyen, “Fullerenes as Key Components for Low-Dimensional (Photo)electrocatalytic Nanohybrid Materials”, doi: 10.1002/anie.202009449.
  • A. R. Puente Santiago, O. Fernandez-Delgado, A. shley Gomez, M. Ariful Ahsan, and L. Echegoyen, “Fullerenes as Key Components for Low-Dimensional (Photo)electrocatalytic Nanohybrid Materials”, doi: 10.1002/anie.202009449.
  • N. F. Goldshleger, “Fullerenes and Fullerene-based materials in catalysis,” Fullerene Science and Technology, vol. 9, no. 3, pp. 255–280, May 2007, doi: 10.1081/FST-100104493.
  • S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991, doi: 10.1038/354056a0.
  • S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, no. 6430, pp. 603–605, 1993, doi: 10.1038/363603a0.
  • E. E. Tkalya, M. Ghislandi, G. de With, and C. E. Koning, “The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites,” Curr. Opin. Colloid Interface Sci., vol. 17, pp. 225–232, 2012.
  • M. Xu, D. N. Futaba, M. Yumura, and K. Hata, “Carbon Nanotubes with Temperature-Invariant Creep and Creep-Recovery from −190 to 970 °C,” Advanced Materials, vol. 23, no. 32, pp. 3686–3691, Aug. 2011, doi: 10.1002/adma.201101412.
  • K. Uetani, S. Ata, S. Tomonoh, T. Yamada, M. Yumura, and K. Hata, “Elastomeric Thermal Interface Materials with High Through-Plane Thermal Conductivity from Carbon Fiber Fillers Vertically Aligned by Electrostatic Flocking,” Advanced Materials, vol. 26, no. 33, pp. 5857–5862, Sep. 2014, doi: 10.1002/adma.201401736.
  • C. Gao, P. Feng, S. Peng, and C. Shuai, “Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair,” Acta Biomater, vol. 61, pp. 1–20, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.05.020.
  • F. Yang et al., “Growing Zigzag (16,0) Carbon Nanotubes with Structure-Defined Catalysts,” J Am Chem Soc, vol. 137, no. 27, pp. 8688–8691, Jul. 2015, doi: 10.1021/jacs.5b04403.
  • F. Yang et al., “Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts,” Nature, vol. 510, no. 7506, pp. 522–524, Jun. 2014, doi: 10.1038/nature13434.
  • A. Khalid, A. Abdel-Karim, M. Ali Atieh, S. Javed, and G. McKay, “PEG-CNTs nanocomposite PSU membranes for wastewater treatment by membrane bioreactor,” Sep Purif Technol, vol. 190, pp. 165–176, 2018, doi: 10.1016/j.seppur.2017.08.055.
  • N. Baig, M. Sajid, and T. A. Saleh, “Recent trends in nanomaterial-modified electrodes for electroanalytical applications,” Feb. 01, 2019, Elsevier B.V. doi: 10.1016/j.trac.2018.11.044.
  • N. Baig, M. Sajid, and T. A. Saleh, “Recent trends in nanomaterial-modified electrodes for electroanalytical applications,” Feb. 01, 2019, Elsevier B.V. doi: 10.1016/j.trac.2018.11.044.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Mar. 2006, American Chemical Society . doi: 10.1021/cr050569o.
  • D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, “Chemistry of carbon nanotubes,” Mar. 2006, American Chemical Society . doi: 10.1021/cr050569o.
  • G. Başkaya et al., “Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes,” Biosens Bioelectron, vol. 91, pp. 728–733, May 2017, doi: 10.1016/j.bios.2017.01.045.
  • S. Muhammad Imran et al., “Carbon Nanotube-Based Thermoplastic Polyurethane-Poly (methyl methacrylate) Nanocomposites for Pressure Sensing Applications,” 2016, doi: 10.1002/pen.24333.
  • X. Guo, D. J. Guo, J. S. Wang, X. P. Qiu, L. Q. Chen, and W. T. Zhu, “Using phosphomolybdic acid (H3PMo12O40) to efficiently enhance the electrocatalytic activity and CO-tolerance of platinum nanoparticles supported on multi-walled carbon nanotubes catalyst in acidic medium,” Journal of Electroanalytical Chemistry, vol. 638, no. 1, pp. 167–172, Jan. 2010, doi: 10.1016/j.jelechem.2009.09.001.
  • P. Gopal and T. M. Reddy, “Fabrication of carbon-based nanomaterial composite electrochemical sensor for the monitoring of terbutaline in pharmaceutical formulations,” Colloids Surf A Physicochem Eng Asp, vol. 538, pp. 600–609, Feb. 2018, doi: 10.1016/j.colsurfa.2017.11.059.
  • E. Demir, B. Sen, and F. Sen, “Highly efficient Pt nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells,” Nano-Structures and Nano-Objects, vol. 11, pp. 39–45, Jul. 2017, doi: 10.1016/j.nanoso.2017.06.003.
  • M. S. Nas, E. Kuyuldar, B. Demirkan, M. H. Calimli, O. Demirbaş, and F. Sen, “Magnetic nanocomposites decorated on multiwalled carbon nanotube for removal of Maxilon Blue 5G using the sono-Fenton method,” Sci Rep, vol. 9, no. 1, pp. 1–11, Dec. 2019, doi: 10.1038/s41598-019-47393-0.
  • W. Bao, N. Zhang, P. Feng, H. Wu, and X. Zhu, “Time and species dependent ambient air’s effects on carbon clusters generated during femtosecond laser ablation of highly oriented pyrolytic graphite,” European Physical Journal D, vol. 69, no. 12, Dec. 2015, doi: 10.1140/EPJD/E2015-60161-1.
  • C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Appl Phys A Mater Sci Process, vol. 72, no. 5, pp. 573–580, 2001, doi: 10.1007/S003390100761/METRICS.
  • S. Arepalli, “Laser Ablation Process for Single-Walled Carbon Nanotube Production,” J Nanosci Nanotechnol, vol. 4, no. 4, pp. 317–325, Apr. 2004, doi: 10.1166/JNN.2004.072.
  • T. Maruyama, “Carbon Nanotube Growth Mechanisms,” Handbook of Carbon Nanotubes, pp. 1–31, 2021, doi: 10.1007/978-3-319-70614-6_53-1.
  • S. Dixit and A. K. Shukla, “Raman studies of single-walled carbon nanotubes synthesized by pulsed laser ablation at room temperature,” Appl Phys A Mater Sci Process, vol. 124, no. 6, Jun. 2018, doi: 10.1007/S00339-018-1826-8.
  • Y. Hanaoka, F. Takebe, Y. Nodasaka, I. Hara, H. Matsuyama, and I. Yumoto, “Growth-Dependent Catalase Localization in Exiguobacterium oxidotolerans T-2-2T Reflected by Catalase Activity of Cells,” PLoS One, vol. 8, no. 10, p. e76862, Oct. 2013, doi: 10.1371/journal.pone.0076862.
  • M. Keidar and A. M. Waas, “On the conditions of carbon nanotube growth in the arc discharge,” Nanotechnology, vol. 15, no. 11, p. 1571, Oct. 2004, doi: 10.1088/0957-4484/15/11/034.
  • J. Kong et al., “Nanotube Molecular Wires as Chemical Sensors,” Science (1979), vol. 287, no. 5453, pp. 622–625, Jan. 2000, doi: 10.1126/SCIENCE.287.5453.622.
  • A. Buldum and J. P. Lu, “Electron field emission properties of closed carbon nanotubes,” Phys. Rev. Lett., vol. 91, no. 23, p. 236801, 2003, doi: 10.1103/physrevlett.91.236801.
  • H. Gao et al., “Hydrogen adsorption of open-tipped insufficiently graphitized multiwalled carbon nanotubes,” Appl. Phys. Lett., vol. 83, no. 16, p. 3389, Oct. 2003, doi: 10.1063/1.1620675.
  • K. Balasubramanian and M. Burghard, “Chemically functionalized carbon nanotubes,” Small, vol. 1, no. 2, pp. 180–192, Feb. 2005, doi: 10.1002/smll.200400118.
  • S. Ahmed, A. Aitani, F. Rahman, A. Al-Dawood, and F. Al-Muhaish, “Decomposition of hydrocarbons to hydrogen and carbon,” Appl Catal A Gen, vol. 359, no. 1–2, pp. 1–24, May 2009, doi: 10.1016/J.APCATA.2009.02.038.
  • S. Heinze, J. Tersoff, and P. Avouris, “Electrostatic engineering of nanotube transistors for improved performance,” Appl Phys Lett, vol. 83, no. 24, pp. 5038–5040, Dec. 2003, doi: 10.1063/1.1632531.
  • J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, Mar. 2007, doi: 10.1038/nature05545.
  • R. Kleingeld, J. Wang, and M. Lein, “Buckminster fullerene adhesion on graphene flakes: Numerical accuracy of dispersion corrected DFT,” Polyhedron, vol. 114, pp. 110–117, Aug. 2016, doi: 10.1016/j.poly.2015.11.016.
  • V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril, “Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures,” Chem Rev, vol. 115, no. 11, pp. 4744–4822, Jun. 2015, doi: 10.1021/CR500304F.
  • V. Ganesh, M. Shkir, S. Alfaify, H. Algarni, M. M. Abutalib, and I. S. Yahia, “Remarkable effect of Ni2+doping on structural, second harmonic generation, optical, mechanical and dielectric properties of KDP single crystals,” Physica B Condens Matter, vol. 491, pp. 1–11, Jun. 2016, doi: 10.1016/j.physb.2016.03.004.
  • Z. Li, Z. Liu, H. Sun, and C. Gao, “Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene,” Chem Rev, vol. 115, no. 15, pp. 7046–7117, Aug. 2015, doi: 10.1021/ACS.CHEMREV.5B00102.
  • E. V. Raksha et al., “Carbon Nanoparticles from Thermally Expanded Cointercalates of Graphite Nitrate with Organic Substances,” Springer Proceedings in Materials, vol. 41, pp. 38–47, 2024, doi: 10.1007/978-3-031-52239-0_4.
  • N. Elavarasu, S. Karuppusamy, S. Muralidharan, M. Anantharaja, and R. Gopalakrishnan, “Fabrication and performance study of electro-optical modulator and third order nonlinearity using unidirectional method (Sankaranarayanan-Ramasamy) grown Imidazolium l-Tartrate (0 1 0) single crystal,” Opt Mater (Amst), vol. 46, pp. 141–148, Aug. 2015, doi: 10.1016/j.optmat.2015.03.060.
  • Chrobak, M. Maliński, and J. Zakrzewski, “Simultaneous determination of the thermal diffusivity and a drum factor for CdBeMnTe crystals with the photoacoustic method,” Thermochim Acta, vol. 606, pp. 84–89, Apr. 2015, doi: 10.1016/j.tca.2015.03.014.
  • B. P. Woodall et al., “Skeletal muscle-specific G protein-coupled receptor kinase 2 ablation alters isolated skeletal muscle mechanics and enhances clenbuterol-stimulated hypertrophy,” Journal of Biological Chemistry, vol. 291, no. 42, pp. 21913–21924, Oct. 2016, doi: 10.1074/jbc.M116.721282.
  • H. Eraki et al., “Magnetization Plateaus of a Double Fullerene Core/Shell Like-Nanostructure in an External Magnetic Field: Monte Carlo Study,” Jordan Journal of Physics, vol. 16, no. 4, pp. 435–445, Oct. 2023, doi: 10.47011/16.4.6.
  • A. Y. S. Tan et al., “2D carbon materials based photoelectrochemical biosensors for detection of cancer antigens,” Biosens Bioelectron, vol. 219, Jan. 2023, doi: 10.1016/j.bios.2022.114811.
  • A. K. Geim and K. S. Novoselov, “The rise of graphene,” in Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific Publishing Co., 2009, pp. 11–19. doi: 10.1142/9789814287005_0002.
  • A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev Mod Phys, vol. 81, no. 1, pp. 109–162, Jan. 2009, doi: 10.1103/RevModPhys.81.109.
  • Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, “Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance,” J Am Chem Soc, vol. 136, no. 11, pp. 4394–4403, Mar. 2014, doi: 10.1021/ja500432h.
  • H. Nishihara and T. Kyotani, “Templated Nanocarbons for Energy Storage,” Advanced Materials, vol. 24, no. 33, pp. 4473–4498, Aug. 2012, doi: 10.1002/adma.201201715.
  • J. Zhang et al., “Homogeneous silver nanoparticles decorated 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials,” Carbon N Y, vol. 165, pp. 404–411, Sep. 2020, doi: 10.1016/j.carbon.2020.04.043.
  • Y. Cui and M. Zhang, “Fabrication of cross-linked carbon nanotube foam using polymethylmethacrylate microspheres as templates,” J Mater Chem A Mater, vol. 1, no. 44, pp. 13984–13988, Oct. 2013, doi: 10.1039/c3ta13065g.
  • D. N. Futaba et al., “Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes,” Nat Mater, vol. 5, no. 12, pp. 987–994, Dec. 2006, doi: 10.1038/nmat1782.
  • Y. Zhang and H. Dai, “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Appl Phys Lett, vol. 77, no. 19, pp. 3015–3017, Nov. 2000, doi: 10.1063/1.1324731.
  • J. Xie, Q. Zhang, J. Y. Lee, and D. I. C. Wang, “General method for extended metal nanowire synthesis: Ethanol induced self-assembly,” Journal of Physical Chemistry C, vol. 111, no. 46, pp. 17158–17162, Nov. 2007, doi: 10.1021/jp0768120.
  • A. Pal, S. Shah, and S. Devi, “Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent,” Mater Chem Phys, vol. 114, no. 2–3, pp. 530–532, Apr. 2009, doi: 10.1016/j.matchemphys.2008.11.056.
  • V. Lazarescu, R. Scurtu, M. F. Lazarescu, E. Santos, H. Jones, and W. Schmickler, “Field effects and surface states in second harmonic generation at n-GaAs(h k l) electrodes,” Electrochim Acta, vol. 50, no. 25-26 SPEC. ISS., pp. 4830–4836, Sep. 2005, doi: 10.1016/j.electacta.2005.02.069.
  • M. Koç Keşir and M. D. Yılmaz, “Potato peel carbon dots produced via fixed bed pyrolysis reactor decorated 1-D TiO2 nanorods for rapid removal of methylene blue, Cr (VI), Escherichia coli, and Aspergillus niger,” Ind Crops Prod, vol. 220, p. 119244, Nov. 2024, doi: 10.1016/J.INDCROP.2024.119244.
  • T. F. M. Y. SH Yu, “Hydrothermal synthesis of ZnFe2O4 ultrafine particles with high magnetization,” J Magn Magn Mater, vol. 256, pp. 420–424, 2003.
  • J. G. S. Moo, C. C. Mayorga-Martinez, H. Wang, B. Khezri, W. Z. Teo, and M. Pumera, “Nano/Microrobots Meet Electrochemistry,” Adv Funct Mater, vol. 27, no. 12, Mar. 2017, doi: 10.1002/adfm.201604759.
  • J. G. S. Moo, C. C. Mayorga-Martinez, H. Wang, B. Khezri, W. Z. Teo, and M. Pumera, “Nano/Microrobots Meet Electrochemistry,” Adv Funct Mater, vol. 27, no. 12, Mar. 2017, doi: 10.1002/adfm.201604759.
  • R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher, “Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold,” J Catal, vol. 253, no. 1, pp. 132–138, Jan. 2008, doi: 10.1016/J.JCAT.2007.10.017.
  • Y. Zhang et al., “New gold nanostructures for sensor applications: A review,” Materials, vol. 7, no. 7, pp. 5169–5201, 2014, doi: 10.3390/MA7075169.
  • H. Du Toit and M. Di Lorenzo, “Electrodeposited highly porous gold microelectrodes for the direct electrocatalytic oxidation of aqueous glucose,” Sens Actuators B Chem, vol. 192, pp. 725–729, Mar. 2014, doi: 10.1016/J.SNB.2013.11.017.
  • H. Jia, P. Gao, H. Ma, D. Wu, B. Du, and Q. Wei, “Preparation of Au-Pt nanostructures by combining top-down with bottom-up strategies and application in label-free electrochemical immunosensor for detection of NMP22,” Bioelectrochemistry, vol. 101, pp. 22–27, 2015, doi: 10.1016/J.BIOELECHEM.2014.06.012.
  • I. Venditti, “Engineered gold-based nanomaterials: Morphologies and functionalities in biomedical applications. a mini review,” Bioengineering, vol. 6, no. 2, Jun. 2019, doi: 10.3390/BIOENGINEERING6020053.
  • J. Biener, M. M. Biener, R. J. Madix, and C. M. Friend, “Nanoporous Gold: Understanding the Origin of the Reactivity of a 21st Century Catalyst Made by Pre-Columbian Technology,” ACS Catal, vol. 5, no. 11, pp. 6263–6270, Nov. 2015, doi: 10.1021/ACSCATAL.5B01586.
  • N. Jia, L. Cao, and Z. Wang, “Platinum-coated gold nanoporous film surface: Electrodeposition and enhanced electrocatalytic activity for methanol oxidation,” Langmuir, vol. 24, no. 11, pp. 5932–5936, Jun. 2008, doi: 10.1021/LA800163F.
  • M. Falk, Z. Blum, and S. Shleev, “Direct electron transfer based enzymatic fuel cells,” Electrochim Acta, vol. 82, pp. 191–202, Nov. 2012, doi: 10.1016/J.ELECTACTA.2011.12.133.
  • P. Bollella and L. Gorton, “Enzyme based amperometric biosensors,” Curr Opin Electrochem, vol. 10, pp. 157–173, Aug. 2018, doi: 10.1016/J.COELEC.2018.06.003.
  • P. Bollella, “Porous Gold: A New Frontier for Enzyme-Based Electrodes,” Nanomaterials 2020, Vol. 10, Page 722, vol. 10, no. 4, p. 722, Apr. 2020, doi: 10.3390/NANO10040722.
  • M. A. Dayton, J. C. Brown, K. J. Stutts, and R. M. Wightman, “Faradaic Electrochemistry at Microvoltammetric Electrodes,” Anal Chem, vol. 52, no. 6, pp. 946–950, May 1980, doi: 10.1021/AC50056A040/ASSET/AC50056A040.FP.PNG_V03.
  • R. M. Wightman, “Probing Cellular Chemistry in Biological Systems with Microelectrodes,” Science (1979), vol. 311, no. 5767, pp. 1570–1574, Mar. 2006, doi: 10.1126/SCIENCE.1120027.
  • E. Türkmen, “Glikoz Tayini için Bir Biyosensör Geliştirilmesi,” 2015.
  • G. Kiran Raj et al., “Conductive polymers and composites-based systems: An incipient stride in drug delivery and therapeutics realm,” Journal of Controlled Release, vol. 355, pp. 709–729, Mar. 2023, doi: 10.1016/j.jconrel.2023.02.017.
  • Y. Wu et al., “Cholesterol-substituted 3,4-ethylenedioxythiophene (EDOT-MA-cholesterol) and Poly(3,4-ethylenedioxythiophene) (PEDOT-MA-cholesterol),” Giant, vol. 15, Aug. 2023, doi: 10.1016/j.giant.2023.100163.
  • I. Uzieliene, A. Popov, R. Vaiciuleviciute, G. Kirdaite, E. Bernotiene, and A. Ramanaviciene, “Polypyrrole-based structures for activation of cellular functions under electrical stimulation,” Bioelectrochemistry, vol. 155, Feb. 2024, doi: 10.1016/j.bioelechem.2023.108585.
  • A. L. Loo, M. G. Pineda, H. Saade, M. E. Treviño, and R. G. López, “Synthesis of magnetic nanoparticles in bicontinuous microemulsions. Effect of surfactant concentration,” in Journal of Materials Science, May 2008, pp. 3649–3654. doi: 10.1007/s10853-008-2581-6.
  • E. G. Pineda, L. A. Azpeitia, M. J. R. Presa, A. E. Bolzán, and C. A. Gervasi, “Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications,” Electrochim Acta, vol. 444, Mar. 2023, doi: 10.1016/j.electacta.2023.142011.
  • H. Kim, Y. Won, H. W. Song, Y. Kwon, M. Jun, and J. H. Oh, “Organic Mixed Ionic–Electronic Conductors for Bioelectronic Sensors: Materials and Operation Mechanisms,” Advanced Science, vol. 11, no. 27, Jul. 2024, doi: 10.1002/ADVS.202306191.
  • O. Mergel, P. T. Kühn, S. Schneider, U. Simon, and F. A. Plamper, “Influence of Polymer Architecture on the Electrochemical Deposition of Polyelectrolytes,” Electrochim Acta, vol. 232, pp. 98–105, Apr. 2017, doi: 10.1016/j.electacta.2017.02.102.
  • D. Premathilake, R. A. Outlaw, S. G. Parler, S. M. Butler, and J. R. Miller, “Electric double layer capacitors for ac filtering made from vertically oriented graphene nanosheets on aluminum,” Carbon N Y, vol. 111, pp. 231–237, Jan. 2017, doi: 10.1016/j.carbon.2016.09.080.
  • S. Bhaskara, T. Sakorikar, S. Chatterjee, K. V. Shabari Girishan, and H. J. Pandya, “Recent advancements in Micro-engineered devices for surface and deep brain animal studies: A review,” Sens Biosensing Res, vol. 36, Jun. 2022, doi: 10.1016/j.sbsr.2022.100483.
  • K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, and N. M. Markovic, “Measurement of oxygen reduction activities via the rotating disc electrode method: From Pt model surfaces to carbon-supported high surface area catalysts,” Electrochim Acta, vol. 53, no. 7, pp. 3181–3188, Feb. 2008, doi: 10.1016/j.electacta.2007.11.057.
  • V. R. Stamenkovic et al., “Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces,” Nat Mater, vol. 6, no. 3, pp. 241–247, Mar. 2007, doi: 10.1038/nmat1840.
  • J. Fan, S. S. Rezaie, M. Facchini-Rakovich, D. Gudi, C. Montemagno, and M. Gupta, “Tuning PEDOT:PSS conductivity to obtain complementary organic electrochemical transistor,” Org Electron, vol. 66, pp. 148–155, Mar. 2019, doi: 10.1016/j.orgel.2018.12.013.
  • K. Trzciński and A. Lisowska-Oleksiak, “Electrochemical characterization of a composite comprising PEDOT/PSS and N doped TiO2 performed in aqueous and non-aqueous electrolytes,” Synth Met, vol. 209, pp. 399–404, Nov. 2015, doi: 10.1016/j.synthmet.2015.08.026.
  • G. Schiavone, X. Kang, F. Fallegger, J. Gandar, G. Courtine, and S. P. Lacour, “Guidelines to Study and Develop Soft Electrode Systems for Neural Stimulation,” Neuron, vol. 108, no. 2, pp. 238–258, Oct. 2020, doi: 10.1016/j.neuron.2020.10.010.
  • K. Krukiewicz, T. Jarosz, A. P. Herman, R. Turczyn, S. Boncel, and J. K. Zak, “The effect of solvent on the synthesis and physicochemical properties of poly(3,4-ethylenedioxypyrrole),” Synth Met, vol. 217, pp. 231–236, Jul. 2016, doi: 10.1016/j.synthmet.2016.04.005.
  • L. C. Wang et al., “The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact,” Biosens Bioelectron, vol. 145, Dec. 2019, doi: 10.1016/j.bios.2019.111661.
  • Y. Pan, M. He, J. Wu, H. Qi, and Y. Cheng, “One-step synthesis of MXene-functionalized PEDOT:PSS conductive polymer hydrogels for wearable and noninvasive monitoring of sweat glucose,” Sens Actuators B Chem, vol. 401, Feb. 2024, doi: 10.1016/j.snb.2023.135055.
  • J. B. Schlenoff and H. Xu, “Evolution of Physical and Electrochemical Properties of Polypyrrole during Extended Oxidation,” J Electrochem Soc, vol. 139, no. 9, pp. 2397–2401, Sep. 1992, doi: 10.1149/1.2221238.
  • K. Krukiewicz, “Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: A mini review,” Electrochem commun, vol. 116, Jul. 2020, doi: 10.1016/j.elecom.2020.106742.
  • C. Horváth et al., “Polymer-based laminar probes with an ultra-long flexible spiral-shaped cable for in vivo neural recordings,” Sens Actuators B Chem, vol. 417, Oct. 2024, doi: 10.1016/j.snb.2024.136220.
  • S. Lee, K. Min, J. Jung, J. Yi, G. Tae, and J. Y. Lee, “Implantable conductive polymer bioelectrode with enzymatic antioxidant activity for enhanced tissue responses and in vivo performance,” Chemical Engineering Journal, vol. 494, Aug. 2024, doi: 10.1016/j.cej.2024.152861.
  • N. Mintz Hemed, F. J. Hwang, E. T. Zhao, J. B. Ding, and N. A. Melosh, “Multiplexed neurochemical sensing with sub-nM sensitivity across 2.25 mm2 area,” Biosens Bioelectron, vol. 261, Oct. 2024, doi: 10.1016/j.bios.2024.116474.
  • R. Bellamkonda, J. P. Ranieri, and P. Aebischer, “Laminin oligopeptide derivatized agarose gels allow three‐dimensional neurite extension in vitro,” J Neurosci Res, vol. 41, no. 4, pp. 501–509, 1995, doi: 10.1002/JNR.490410409.
  • R. Sanda et al., “Low-invasive neural recording in mouse models with diabetes via an ultrasmall needle-electrode,” Biosens Bioelectron, vol. 240, Nov. 2023, doi: 10.1016/j.bios.2023.115605.
  • W. Jin and G. Maduraiveeran, “Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies,” J Anal Sci Technol, vol. 9, no. 1, pp. 1–11, Dec. 2018, doi: 10.1186/S40543-018-0150-4/FIGURES/18.
  • P. S. Nnamchi and C. S. Obayi, “Electrochemical characterization of nanomaterials,” in Characterization of Nanomaterials: Advances and Key Technologies, Elsevier, 2018, pp. 103–127. doi: 10.1016/B978-0-08-101973-3.00004-3.
  • P. S. Nnamchi and C. S. Obayi, “Electrochemical characterization of nanomaterials,” in Characterization of Nanomaterials: Advances and Key Technologies, Elsevier, 2018, pp. 103–127. doi: 10.1016/B978-0-08-101973-3.00004-3.
  • M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells,” Jun. 07, 2012, Nature Publishing Group. doi: 10.1038/nature11115.
  • U. Lucia, “Overview on fuel cells,” Feb. 01, 2014, Elsevier Ltd. doi: 10.1016/j.rser.2013.09.025.
  • D. U. Sauer, J. Benz, B. Ortiz, W. Roth, and A. Steinhüser, “Fuel cells in photovoltaic hybrid systems for stand-alone power Supplies,” 2003.
  • V. R. Stamenkovic et al., “Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability,” Science (1979), vol. 315, no. 5811, pp. 493–497, Jan. 2007, doi: 10.1126/science.1135941.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of nanoparticles,” Apr. 01, 2014, Wiley-VCH Verlag. doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of nanoparticles,” Apr. 01, 2014, Wiley-VCH Verlag. doi: 10.1002/anie.201306828.
  • S. M. Oja, M. Wood, and B. Zhang, “Nanoscale electrochemistry,” Jan. 15, 2013, American Chemical Society. doi: 10.1021/ac3031702.
  • S. M. Oja, Y. Fan, C. M. Armstrong, P. Defnet, and B. Zhang, “Nanoscale Electrochemistry Revisited,” Jan. 05, 2016, American Chemical Society. doi: 10.1021/acs.analchem.5b04542.
  • P. H. Robbs and N. V. Rees, “Nanoparticle electrochemistry,” Physical Chemistry Chemical Physics, vol. 18, no. 36, pp. 24812–24819, Sep. 2016, doi: 10.1039/c6cp05101d.
  • P. H. Robbs and N. V. Rees, “Nanoparticle electrochemistry,” Physical Chemistry Chemical Physics, vol. 18, no. 36, pp. 24812–24819, Sep. 2016, doi: 10.1039/c6cp05101d.
  • S. Chen and Y. Liu, “Electrochemistry at nanometer-sized electrodes,” Jan. 14, 2014, The Royal Society of Chemistry. doi: 10.1039/c3cp53773k.
  • S. Chen and Y. Liu, “Electrochemistry at nanometer-sized electrodes,” Jan. 14, 2014, The Royal Society of Chemistry. doi: 10.1039/c3cp53773k.
  • R. W. Murray, “Nanoelectrochemistry: Metal nanoparticles, nanoelectrodes, and nanopores,” Chem Rev, vol. 108, no. 7, pp. 2688–2720, Jul. 2008, doi: 10.1021/CR068077E/ASSET/CR068077E.FP.PNG_V03.
  • J. C. Eklund, A. M. Bond, J. A. Alden, and R. G. Compton, “Perspectives in Modern Voltammetry: Basic Concepts and Mechanistic Analysis,” Adv Phys Org Chem, vol. 32, no. C, pp. 1–120, Jan. 1999, doi: 10.1016/S0065-3160(08)60006-4.
  • F. Karimi, E. E. Altuner, A. Aygun, R. Bayat, S. Rajendran, and F. Sen, “Synthesis of Silver Nanoparticles by Biogenic Methods: Characterization and Development of a Sensor Sensible to Pharmaceutical Medicine Paracetamol,” Top Catal, vol. 67, no. 9–12, pp. 585–593, May 2024, doi: 10.1007/S11244-023-01887-4/TABLES/1.
  • T. Y. Uzumer, S. Cete, Y. Tekeli, and E. E. Altuner, “Development of an amperometric biosensor that can determine the amount of glucose in the blood using the glucose oxidase enzyme: Preparation of polyaniline–polypyrrole–poly(sodium-4-styrenesulfonate) film,” Biotechnol Appl Biochem, Aug. 2024, doi: 10.1002/BAB.2640.
  • C. G. Zoski, “Ultramicroelectrodes: Design, Fabrication, and Characterization”, doi: 10.1002/1521-4109(200208)14:15/16.
  • M. L. Longmire, M. Watanabe, H. Zhang, T. T. Wooster, and R. W. Murray, “Voltammetric Measurement of Ultraslow Diffusion Rates in Polymeric Media with Microdisk Electrodes,” Anal Chem, vol. 62, no. 7, pp. 747–752, Apr. 1990, doi: 10.1021/AC00206A020/ASSET/AC00206A020.FP.PNG_V03.
  • P. Sun, F. O. Laforge, T. P. Abeyweera, S. A. Rotenberg, J. Carpino, and M. V. Mirkin, “Nanoelectrochemistry of mammalian cells,” Proc Natl Acad Sci U S A, vol. 105, no. 2, p. 443, Jan. 2008, doi: 10.1073/PNAS.0711075105.
  • J. Madden, “Development and characterisation of macro-disc and micro-band electrodes for electrochemical sensing applications,” 2022, University College Cork. Accessed: Sep. 03, 2024. [Online]. Available: https://hdl.handle.net/10468/14471
  • A. M. Bond, “Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. A review,” Analyst, vol. 119, no. 11, pp. 1R-21R, Jan. 1994, doi: 10.1039/AN994190001R.
  • V. Lotito and T. Zambelli, “Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists,” Adv Colloid Interface Sci, vol. 246, pp. 217–274, Aug. 2017, doi: 10.1016/J.CIS.2017.04.003.
  • M. Brust, D. Bethell, C. J. Kiely, and D. J. Schiffrin, “Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties,” Langmuir, vol. 14, no. 19, pp. 5425–5429, Sep. 1998, doi: 10.1021/LA980557G.
  • I. An, H. V. Nguyen, A. R. Heyd, and R. W. Collins, “Simultaneous real‐time spectroscopic ellipsometry and reflectance for monitoring thin‐film preparation,” Review of Scientific Instruments, vol. 65, no. 11, pp. 3489–3500, Nov. 1994, doi: 10.1063/1.1144527.
  • T. Li and W. Hu, “Electrochemistry in nanoscopic volumes,” Nanoscale, vol. 3, no. 1, pp. 166–176, Jan. 2011, doi: 10.1039/C0NR00325E.
  • S. Ranganathan, R. Guo, and R. W. Murray, “Nanoparticle films as electrodes: Voltammetric sensitivity to the nanoparticle energy gap,” Langmuir, vol. 23, no. 13, pp. 7372–7377, Jun. 2007, doi: 10.1021/LA070008N/ASSET/IMAGES/LA070008N.SOCIAL.JPEG_V03.
  • R. H. Terrill et al., “Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters,” J Am Chem Soc, vol. 117, no. 50, pp. 12537–12548, Jan. 1995, doi: 10.1021/JA00155A017/ASSET/JA00155A017.FP.PNG_V03.
  • P. Cardenas Lopez et al., “Multidimensional characterization of noble metal alloy nanoparticles by multiwavelength analytical ultracentrifugation,” Nanoscale, vol. 14, no. 35, pp. 12928–12939, Sep. 2022, doi: 10.1039/D2NR02633C.
  • A. V. Walker et al., “The Dynamics of Noble Metal Atom Penetration through Methoxy-Terminated Alkanethiolate Monolayers,” J Am Chem Soc, vol. 126, no. 12, pp. 3954–3963, Mar. 2004, doi: 10.1021/JA0395792/ASSET/IMAGES/MEDIUM/JA0395792N00001.GIF.
  • J. T. Cox and B. Zhang, “Nanoelectrodes: Recent advances and new directions,” Annual Review of Analytical Chemistry, vol. 5, no. Volume 5, 2012, pp. 253–272, Jul. 2012, doi: 10.1146/ANNUREV-ANCHEM-062011-143124/CITE/REFWORKS.
  • C. Kranz and C. Demaille, “Hybrid Scanning Electrochemical Techniques : Methods and Applications,” Scanning Electrochemical Microscopy, pp. 513–580, Jul. 2022, doi: 10.1201/9781003004592-17.
  • R.-J. Yu et al., “A Confined Nanopipette: From Fundamental to Application,” Confining Electrochemistry to Nanopores, pp. 162–209, Oct. 2020, doi: 10.1039/9781788013260-00162.
  • E. Kocaturk, T. Salan, O. Ozcelik, M. H. Alma, and Z. Candan, “Recent Advances in Lignin-Based Biofuel Production,” Energies 2023, Vol. 16, Page 3382, vol. 16, no. 8, p. 3382, Apr. 2023, doi: 10.3390/EN16083382.
  • S. A. Schulz et al., “Roadmap on photonic metasurfaces,” Appl Phys Lett, vol. 124, no. 26, Jun. 2024, doi: 10.1063/5.0204694/3300335/ROADMAP-ON-PHOTONIC-METASURFACES.
  • L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui, “Directed placement of suspended carbon nanotubes for nanometer-scale assembly,” Appl Phys Lett, vol. 80, no. 20, pp. 3826–3828, May 2002, doi: 10.1063/1.1481237.
  • M. Alizadeh et al., “An ultra-sensitive rifampicin electrochemical sensor based on Fe3O4 nanoparticles anchored Multiwalled Carbon nanotube modified glassy carbon electrode,” Chemosphere, vol. 309, p. 136566, Dec. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.136566.
  • U. Bruno-Mota, “Electrochemical Fabrication and Characterization of Conical Tungsten Ultramicroelectrodes”.
  • A. Escarpa and M. A. Lo, “Environmental Analysis by Electrochemical Sensors and Biosensors,” vol. 2, pp. 615–650, 2014, doi: 10.1007/978-1-4939-0676-5.
  • S. Daniele and C. Bragato, “From Macroelectrodes to Microelectrodes: Theory and Electrode Properties,” pp. 373–401, 2014, doi: 10.1007/978-1-4939-0676-5_15.
  • İ. M. Öztürk, “Fine-Tuning Plasmonic Response for Plasmon-Enhanced Photonics,” 2023, Accessed: Sep. 05, 2024. [Online]. Available: https://open.metu.edu.tr/handle/11511/107754
  • D. della Scuola, C. Gaetano Granozzi Supervisore, and G. Andrea Rizzi, “Synthesis and Engineering of Easy&Cheap Silver Based Optical Sensors,” Jul. 2012, Accessed: Sep. 05, 2024. [Online]. Available: https://www.research.unipd.it/handle/11577/3422543
  • S. Bin Jaber, A. Hamilton, Y. Xu, M. E. Kartal, N. Gadegaard, and D. M. Mulvihill, “Friction of flat and micropatterned interfaces with nanoscale roughness,” Tribol Int, vol. 153, Jan. 2021, doi: 10.1016/J.TRIBOINT.2020.106563.
  • S. Bin Jaber, Y. Xu, M. E. Kartal, N. Gadegaard, and D. M. Mulvihill, “The static friction peak in reciprocating sliding,” Tribol Int, vol. 180, Feb. 2023, doi: 10.1016/J.TRIBOINT.2023.108240.
  • B. Koeninger, T. Koegl, T. Hensler, W. Arlt, and K. E. Wirth, “Solid distribution in fluidized and fixed beds with horizontal high speed gas jets,” Powder Technol, vol. 336, pp. 57–69, Aug. 2018, doi: 10.1016/j.powtec.2018.05.035.
  • L. Wang, G. Qi, M. Tao, X. Liu, M. Hassan, and H. Lu, “Simulated pulsed flow of gas and particles in a horizontal oppose-pulsed gas jets of bubbling fluidized bed,” Advanced Powder Technology, vol. 29, no. 12, pp. 3507–3519, Dec. 2018, doi: 10.1016/j.apt.2018.09.035.
  • L. Zhang, W. Liu, and Y. Zhang, “Calculation of teeter bed height of teetered bed separator based on jet theory,” Powder Technol, vol. 295, pp. 225–233, Jul. 2016, doi: 10.1016/j.powtec.2016.03.046.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • Maciej Serda et al., “Synteza i aktywność biologiczna nowych analogów tiosemikarbazonowych chelatorów żelaza,” Uniwersytet śląski, vol. 7, no. 1, pp. 343–354, 2013, doi: 10.2/JQUERY.MIN.JS.
  • P. R. Bueno and C. Gabrielli, “Electrochemistry, Nanomaterials, and Nanostructures,” Springer, Boston, MA, 2009, pp. 81–149. doi: 10.1007/978-0-387-49323-7_3.
  • J. O. Bockris and S. U. M. Khan, Surface Electrochemistry: A Molecular Level Approach .
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/anie.201306828.
  • S. E. F. Kleijn, S. C. S. Lai, M. T. M. Koper, and P. R. Unwin, “Electrochemistry of Nanoparticles,” Angewandte Chemie International Edition, vol. 53, no. 14, pp. 3558–3586, Apr. 2014, doi: 10.1002/ANIE.201306828.
  • T. Nohira, K. Yasuda, and Y. Ito, “Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon,” Nature Materials 2003 2:6, vol. 2, no. 6, pp. 397–401, May 2003, doi: 10.1038/nmat900.
  • Z. Yang et al., “Electrochemical energy storage for green grid,” Chem Rev, vol. 111, no. 5, pp. 3577–3613, May 2011, doi: 10.1021/CR100290V.
  • W. Dreyer, C. Guhlke, and R. Müller, “Bulk-Surface Electrothermodynamics and Applications to Electrochemistry,” Entropy 2018, Vol. 20, Page 939, vol. 20, no. 12, p. 939, Dec. 2018, doi: 10.3390/E20120939.
  • J. Janek and W. G. Zeier, “A solid future for battery development,” Nat Energy, vol. 1, no. 9, Sep. 2016, doi: 10.1038/NENERGY.2016.141.
  • P. Sun and M. V. Mirkin, “Kinetics of electron-transfer reactions at nanoelectrodes,” Anal Chem, vol. 78, no. 18, pp. 6526–6534, Sep. 2006, doi: 10.1021/AC060924Q/SUPPL_FILE/AC060924QSI20060519_011144.PDF.
  • J. N. Janusz et al., “The Electrochemical Peroxydisulfate-Oxalate Autocatalytic Reaction,” J Am Chem Soc, 2024, doi: 10.1021/JACS.4C08080.
  • R. A. Durst, A. J. Bäumner, R. W. Murray, R. P. Buck, and C. P. Andrieux, “Chemically modified electrodes: Recommended terminology and definitions,” Pure and Appl. Chem, vol. 69, no. 6, p. 1317, 1997, doi: 10.1351/pac199769061317.
  • J. Clausmeyer and W. Schuhmann, “Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging,” May 01, 2016, Elsevier B.V. doi: 10.1016/j.trac.2016.01.018.
  • J. Clausmeyer and W. Schuhmann, “Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and high-resolution electrochemical imaging,” May 01, 2016, Elsevier B.V. doi: 10.1016/j.trac.2016.01.018.
  • E. E. Altuner, V. C. Ozalp, M. D. Yilmaz, M. Bekmezci, and F. Sen, “High-efficiency application of CTS-Co NPs mimicking peroxidase enzyme on TMB(ox),” Chemosphere, vol. 292, p. 133429, Apr. 2022, doi: 10.1016/J.CHEMOSPHERE.2021.133429.
  • E. E. Altuner et al., “Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles,” Chemosphere, p. 134077, Feb. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134077.
  • E. E. Altuner et al., “Development of electrochemical aptasensors detecting phosphate ions on TMB substrate with epoxy-based mesoporous silica nanoparticles,” Chemosphere, vol. 297, p. 134077, Jun. 2022, doi: 10.1016/J.CHEMOSPHERE.2022.134077.
  • H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, and F. Şen, “Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing,” Mater Chem Phys, vol. 250, p. 123042, Aug. 2020, doi: 10.1016/J.MATCHEMPHYS.2020.123042.
  • N. Li, Q. Li, X. Guo, M. Yuan, and H. Pang, “Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry,” Sep. 15, 2019, Elsevier B.V. doi: 10.1016/j.cej.2019.04.127.
  • M. A. Abrar, Y. Dong, P. K. Lee, and W. S. Kim, “Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles,” Sci Rep, vol. 6, no. 1, pp. 1–9, Jul. 2016, doi: 10.1038/srep30565.
  • V. Shashikala et al., “Advantages of nano-silver-carbon covered alumina catalyst prepared by electro-chemical method for drinking water purification,” J Mol Catal A Chem, vol. 268, no. 1–2, pp. 95–100, May 2007, doi: 10.1016/j.molcata.2006.10.019.
  • S. Qi, X. Li, Z. Zhang, and H. Dong, “Fabrication and characterisation of electro-brush plated nickel-graphene oxide nano-composite coatings,” Thin Solid Films, vol. 644, pp. 106–114, Dec. 2017, doi: 10.1016/j.tsf.2017.06.064.
  • J. Castelo-Quibén et al., “Carbon - iron electro-catalysts for CO2 reduction. The role of the iron particle size,” Journal of CO2 Utilization, vol. 24, pp. 240–249, Mar. 2018, doi: 10.1016/j.jcou.2018.01.007.
  • Q. H. Guo, J. S. Huang, and T. Y. You, “Electrospun palladium nanoparticle-loaded carbon nanofiber for methanol electro-oxidation,” Fenxi Huaxue/ Chinese Journal of Analytical Chemistry, vol. 41, no. 2, pp. 210–214, Feb. 2013, doi: 10.1016/S1872-2040(13)60629-5.
  • E. J. Menke, M. A. Thompson, C. Xiang, L. C. Yang, and R. M. Penner, “Lithographically patterned nanowire electrodeposition,” Nat Mater, vol. 5, no. 11, pp. 914–919, Nov. 2006, doi: 10.1038/nmat1759.
  • C. Xiang et al., “Lithographically patterned nanowire electrodeposition: A method for patterning electrically continuous metal nanowires on dielectrics,” ACS Nano, vol. 2, no. 9, pp. 1939–1949, Sep. 2008, doi: 10.1021/nn800394k.
  • M. T. Barako et al., “Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites,” ACS Appl Mater Interfaces, vol. 7, no. 34, pp. 19251–19259, Aug. 2015, doi: 10.1021/acsami.5b05147.
  • M. Arefpour, M. Almasi Kashi, F. Khansari Barzoki, M. Noormohammadi, and A. Ramazani, “Electrodeposited metal nanowires as transparent conductive electrodes: Their release conditions, electrical conductivity, optical transparency and chemical stability,” Mater Des, vol. 157, pp. 326–336, Nov. 2018, doi: 10.1016/j.matdes.2018.07.048.
  • P. C. Liu, K. J. Zhu, Y. F. Gao, H. G. Luo, and L. Lu, “Recent progress in the applications of vanadium-based oxides on energy storage: From low-dimensional nanomaterials synthesis to 3D micro/nano-structures and free-standing electrodes fabrication,” Adv Energy Mater, vol. 7, no. 23, p. 1700547, Dec. 2017, doi: 10.1002/aenm.201700547.
  • D. Mariotti and R. M. Sankaran, “Microplasmas for nanomaterials synthesis,” Aug. 18, 2010, IOP Publishing. doi: 10.1088/0022-3727/43/32/323001.
Toplam 252 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanomalzemeler
Bölüm Derlemeler
Yazarlar

Elif Esra Altuner 0000-0001-7663-6898

Fatih Şen

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 31 Aralık 2024
Kabul Tarihi 31 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 1

Kaynak Göster

APA Altuner, E. E., & Şen, F. (2024). A Review: Electrochemistry in Nanomaterials. International Journal of Boron Science and Nanotechnology(1), 105-126.