Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 1 - 4, 31.03.2022
https://doi.org/10.22399/ijcesen.1035440

Öz

Kaynakça

  • [1] Steinhauser, G., Brandl, A. and Johnson, T.E., (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the Total Environment, 470:800-817. DOI: 10.1016/j.scitotenv.2013.10.029.
  • [2] Friedman, S.M., (2011). Three Mile Island, Chernobyl, and Fukushima: An analysis of traditional and new media coverage of nuclear accidents and radiation. Bulletin of the Atomic Scientists, 67(5):55-65. DOI: 10.1177/0096340211421587
  • [3] Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the total environment, 470, 800-817.‏
  • [4] Itoh, M., (2018). Wildlife in the Exclusion Zone in Chernobyl. In Animals and the Fukushima Nuclear Disaster (pp. 177-187). Palgrave Macmillan, Cham.
  • [5] Banin, U., Waiskopf, N., Hammarström, L., Boschloo, G., Freitag, M., Johansson, E. M., & Brudvig, G. W. (2020). Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 32(4): 042003.‏ DOI: 10.1088/1361-6528/abbce8
  • [6] Manna, T. K., & Mahajan, S. M. (2007). Nanotechnology in the Development of Photovoltaic Cells. International Conference on Clean Electrical Power, pp. 379-386, doi: 10.1109/ICCEP.2007.384240.
  • [7] Boxwell, M. (2010). Solar electricity handbook: A simple, practical guide to solar energy-designing and installing photovoltaic solar electric systems. Greenstream publishing.‏
  • [8] Silverman, T.J., Jahn, U., Friesen, G., Pravettoni, M., Apolloni, M., Louwen, A. et al. (2014). Characterization of performance of thin-film photovoltaic technologies. IEA.
  • [9] Li, B., Gali, O.A., Shafiei, M., Hunter, J.A. and Riahi, A.R., (2016). Aluminum transfer buildup on PVD coated work rolls during thermomechanical processing. Surface and Coatings Technology, 308:244-255. DOI: 10.1016/j.surfcoat.2016.07.091
  • [10] Serrano, E., Rus, G. and Garcia-Martinez, J., (2009). Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews, 13(9):2373-2384. DOI: 10.1016/j.rser.2009.06.003
  • [11] Stambouli, A.B. and Traversa, E., (2002). Fuel cells, an alternative to standard sources of energy. Renewable and sustainable energy reviews, 6(3):295-304. DOI:10.1016/S1364-0321(01)00015-6
  • [12] Badwal, S.P.S., Giddey, S., Munnings, C. and Kulkarni, A., (2015). Review of progress in high temperature solid oxide fuel cells. Chem Inform, 46(31) DOI: 10.1002/chin.201531316

Modern Nanotechnology Application for Generation Highly Efficient Electricity in Save Mode and Much Less Polluting

Yıl 2022, , 1 - 4, 31.03.2022
https://doi.org/10.22399/ijcesen.1035440

Öz

Most world country dependent on foreign oil to make things working, which means political disputes or any disputes between countries can result in energy crunches. The negative changes that occur in the global climate and environment due to the burning of fossil fuels, stimulate the search for modern and environmentally friendly sources of energy production. In addition, continued concern about the storage and processing of nuclear waste may limit nuclear energy options. New concepts use nanotechnology as a new application for production of the electricity. In the modern thin-film application technologies, a number of layers can be deposited to improve the cells' energy density, reduce operating temperatures, and lower manufacturing costs. Solid oxide fuel cells (SOFCs), which have the ability to convert chemical energy into electrical energy without combustion, are among the advantages of this cell; High efficiency and much less pollution. Fuel cells - zinc, air, proton exchange membranes, and solid oxide are recent and established energy applications. Several of these solid oxide fuel cells (SOFCs) have emerged as fuel cell technology that has additional positive advantages.

Kaynakça

  • [1] Steinhauser, G., Brandl, A. and Johnson, T.E., (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the Total Environment, 470:800-817. DOI: 10.1016/j.scitotenv.2013.10.029.
  • [2] Friedman, S.M., (2011). Three Mile Island, Chernobyl, and Fukushima: An analysis of traditional and new media coverage of nuclear accidents and radiation. Bulletin of the Atomic Scientists, 67(5):55-65. DOI: 10.1177/0096340211421587
  • [3] Steinhauser, G., Brandl, A., & Johnson, T. E. (2014). Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the total environment, 470, 800-817.‏
  • [4] Itoh, M., (2018). Wildlife in the Exclusion Zone in Chernobyl. In Animals and the Fukushima Nuclear Disaster (pp. 177-187). Palgrave Macmillan, Cham.
  • [5] Banin, U., Waiskopf, N., Hammarström, L., Boschloo, G., Freitag, M., Johansson, E. M., & Brudvig, G. W. (2020). Nanotechnology for catalysis and solar energy conversion. Nanotechnology, 32(4): 042003.‏ DOI: 10.1088/1361-6528/abbce8
  • [6] Manna, T. K., & Mahajan, S. M. (2007). Nanotechnology in the Development of Photovoltaic Cells. International Conference on Clean Electrical Power, pp. 379-386, doi: 10.1109/ICCEP.2007.384240.
  • [7] Boxwell, M. (2010). Solar electricity handbook: A simple, practical guide to solar energy-designing and installing photovoltaic solar electric systems. Greenstream publishing.‏
  • [8] Silverman, T.J., Jahn, U., Friesen, G., Pravettoni, M., Apolloni, M., Louwen, A. et al. (2014). Characterization of performance of thin-film photovoltaic technologies. IEA.
  • [9] Li, B., Gali, O.A., Shafiei, M., Hunter, J.A. and Riahi, A.R., (2016). Aluminum transfer buildup on PVD coated work rolls during thermomechanical processing. Surface and Coatings Technology, 308:244-255. DOI: 10.1016/j.surfcoat.2016.07.091
  • [10] Serrano, E., Rus, G. and Garcia-Martinez, J., (2009). Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews, 13(9):2373-2384. DOI: 10.1016/j.rser.2009.06.003
  • [11] Stambouli, A.B. and Traversa, E., (2002). Fuel cells, an alternative to standard sources of energy. Renewable and sustainable energy reviews, 6(3):295-304. DOI:10.1016/S1364-0321(01)00015-6
  • [12] Badwal, S.P.S., Giddey, S., Munnings, C. and Kulkarni, A., (2015). Review of progress in high temperature solid oxide fuel cells. Chem Inform, 46(31) DOI: 10.1002/chin.201531316
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Mohammed Flayyih Hasan Bu kişi benim

Merdin Danışmaz

Faez Waheed 0000-0002-0003-0467

Yayımlanma Tarihi 31 Mart 2022
Gönderilme Tarihi 11 Aralık 2021
Kabul Tarihi 28 Aralık 2021
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Hasan, M. F., Danışmaz, M., & Waheed, F. (2022). Modern Nanotechnology Application for Generation Highly Efficient Electricity in Save Mode and Much Less Polluting. International Journal of Computational and Experimental Science and Engineering, 8(1), 1-4. https://doi.org/10.22399/ijcesen.1035440