Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 99 - 108, 31.07.2021
https://doi.org/10.22399/ijcesen.960151

Öz

Kaynakça

  • [1]A.S. Abouhaswa, H.O. Tekin, E. Kavaz, U. Perisanoglu. Optical and nuclear radiation protection characteristics of lithium bismo borate glasses: Role of ZrO2 substitution. Radiation Physics and Chemistry, 2021. https://doi.org/10.1016/j.radphyschem.2021.109428.
  • [2] H.O.Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu. Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceramic International, 2019. https://doi.org/10.1016/j.ceramint.2019.08.204.
  • [3] Singh J, Singh H, Sharma J, Singh T, Singh PS. Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Energy, 2018. https://doi.org/10.1016/j.pnucene.2018.04.002.
  • [4] Kaewkhao J., Pokaipisit A., Limsuwan P. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO. Journal of Nuclear Materials 2010; 399: 38–40.
  • [5] Sodhi K.S., Krishna S., Saxena A.K., Sinha A., Khandelwal N., Lee E.Y. Clinical application of “Justification” and “Optimization” principle of ALARA in pediatric CT imaging:‘how many children can be protected from unnecessary radiation?’. Europ. Jour. Rad. 2015. https://doi.org/10.1016/j.ejrad.2015.05.030.
  • [6] S.A.M. Issa. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat.Phys.Chem., 2016. 10.1016/j.radphyschem.2015.11.025.
  • [7] N. Singh, K.J. Singh, K. Singh, H. Singh. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Meth. Phys. Res. B 225 (2004) 305–309.
  • [8] Ab Latif Wani, Anjum Ara, Jawed Ahmad Usmani. Lead toxicity: a review. Interdisiplinary toxicology, 2015. https://doi.org/10.1515/intox-2015-0009.
  • [9] Monisha Jaıshankar, Tenzin Tseten, Naresh Anbalagan, Blessy B. Mathew , Krishnamurthy N. Beeregowda. Toxicity, mechanism and health effects of some heavy metals. Interdisiplinary toxicology, 2014. https://doi.org/10.2478/intox-2014-0009.
  • [10] Y.Al-Hadeethi, S.A.Tijani. The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. Journal of Alloys and Compounds, 2019. https://doi.org/10.1016/j.jallcom.2019.06.259.
  • [11] H.O. Tekin, O. Kilicoglu. The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. Journal of Alloys and Comp., 2019.https://doi.org/10.1016/j.jallcom.2019.152484.
  • [12] Ersundu A.E., Buyukyildiz M., Celikbilek Ersundu M., Sakar E., Kurudirek M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy, 2018. https://doi.org/10.1016/j.pnucene.2017.10.008.
  • [13] P.A. Meyer, M.J. Brown, H. Falk. Global approach to reducing lead exposure and poisoning Mutat. Res. Rev. Mutat.Res., 2008.https://doi.org/10.1016/j.mrrev.2008.03.003.
  • [14] K.A. Fetterly, D.J. Magnuson, G.M. Tannahill, M.D. Hindal, V. Mathew. Effective use of radiation shields to minimize operator dose during invasive cardiologyprocedures. JACC Cardiovasc. Interv., 2011. https://doi.org/10.1016/j.jcin.2011.05.027.
  • [15] Tijani S.A., Kamal S.M., Al-Hadeethi Y., Arib M., Hussein M.A., Wageh S., et al. Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloy Comp., 2018. https://doi.org/10.1016/jjallcom.2018.01.109.
  • [16] M.A.M.Uosif, A.M.A. Mostafa Shams A.M.Issa, H.O.Tekin, Z.A. Alrowaili, O.Kilicoglu. Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study. Journal of Non-Crystalline Solids, 2020.https://doi.org/10.1016/j.jnoncrysol.2019.119882.
  • [17] E.Kavaz, H.O.Tekin, G.Kilic, G.Susoy. Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. Journal of Non-Crystalline Solids, 2020.https://doi.org/10.1016/j.jnoncrysol.2020.120169.
  • [18] H.A.Saudi, H.O.Tekin, Hesham M.H. Zakalyde Shams, A.M.Issa, G.Susoy, M.Zhukovsky. The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. Optical Materials, 2021. https://doi.org/10.1016/j.optmat.2021.110948.
  • [19] G. Kilic, S. Issa, E. İlik, O. Kilicoglu, H.O. Tekin. A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceramics International, 2021. https://doi.org/10.1016/j.ceramint.2020.09.103.
  • [20]El-Sayed A. Waly, Michael A. Fusco, Mohamed A. Bourham. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy, 2016. https://doi.org/10.1016/j.anucene.2016.05.028.
  • [21]R. Wu, J.D. Myers, M.J. Myers. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser Proc SPIE – Solid State Lasers X, 4267 (2001), pp. 56-60.
  • [22] J. Hubbell. Photon mass attenuation and energy-absorption coefficients Int J Appl Radiat Isot, 1982. https://doi.org/10.1016/0020-708X(82)90248-4.
  • [23]G. Susoy, E.E.A. Guclu, O. Kilicoglu, M. Kamislioglu, M.S. Al-Buriahi, M.M. Abuzaid, H.O. Tekin. The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Materials Chemistry and Physics, 2020. https://doi.org/10.1016/j.matchemphys.2019.122481.
  • [24] C. Jayachandran Calculated effective atomic number and kerma values for tissue-equivalent and dosimetry materials Phys Med Biol, 16 (4) (1971), p. 617.
  • [25]M. Taylor, R. Franich, J. Trapp, P. Johnston. Electron interaction with gel dosimeters: effective atomic numbers for collisional, radiative and total interaction processes Radiat Res, 171 (1) (2009), pp. 123-126.
  • [26]Mohammad W. Marashdeh, Ibrahim F. Al-Hamarneh, Eid M. Abdel Munem, , A. A. Tajuddin, A. Ariffin, Saleh Al-Omari. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation, Results in Physics, 2015.https://doi.org/10.1016/j.rinp.2015.08.009.
  • [27] Kulwinder Singh Mann, Sukhmanjit Singh Mann. Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Annals of Nuclear Energy, 2021. https://doi.org/10.1016/j.anucene.2020.107845.
  • [28]S.Kaewjaeng, J.Kaewkhao, P.Limsuwan, U.Maghanemi. Effect of BaO on Optical, Physical and Radiation Shielding Properties of SiO2-B2O3-Al2O3-CaO-Na2O Glasses System. Procedia Engineering, 2012. https://doi.org/10.1016/j.proeng.2012.02.058.
  • [29] Singh K., Singh H., Sharma V., Nathuram R., Khanna A., Kumar R., Bharri S.S., Sahora H.S. Gamma-ray attenuation coefficient in bismuth borate glass ,Journal of Nuclear Instruments and Methods in Physics Research 2002; 194:1-6.
  • [30] Sing S., Kumar A., Sing D., Thind K.S. Barium-borate-flyash-glasses: As radiation shielding materials, Journal of Nuclear Instruments and Methods in Physics Research, 2008; 206:140-146.
  • [31]E.Kavaz, F.I.El Agawany, H.O.Tekin, U.Perisanoglu, Y.S.Rammah. Nuclear radiation shielding using barium borosilicate glass ceramics, 2020. https://doi.org/10.1016/j.jpcs.2020.109437.
  • [32] U. Kara, S.A.M. Issa, G. Susoy, M Rashad, E. Kavaz, N.Y. Yorgun, H.O.Tekin. Synergistic effect of serpentine mineral on Li2B4O7 glasses: optical, structural and nuclear radiation shielding properties. Applied Physics A, 2020. 10.1007/s00339-020-3397-8.
  • [33] H.O. Tekin, Shams A.M. Issa, E. Kavaz. The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express., 2019. 10.1088/2053-1591/ab4cb5.
  • [34] M.M. Abuzaid, G. Susoy, S.A.M. Issa, W. Elshami, O. Kilicoglu, H.O. Tekin. Relationship between melting-conditions and gamma shielding performance of fluoro-sulfo-phosphate (FPS) glass systems: a comparative investigation. Ceramics International, 2020. https://doi.org/10.1016/j.ceramint.2020.03.065.
  • [35] O. Kilicoglu, H.O. Tekin. Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceramics International, 2020. https://doi.org/10.1016/j.ceramint.2019.09.095.
  • [36]U. Kara, E. Kavaz, ShamsA.M.Issa, M. Rashad, G. Susoy, A.M.A. Mostafa, N. Yildiz Yorgun, H.O. Tekin. Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: efect of boron mineral additive. Applied Physics A, 126 (2020), p. 261, 10.1007/s00339-020-3446-3
  • [37] H.O. Tekin, V.P. Singh, T. Manici. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code Appl. Radiat. Isot., 2017. 10.1016/j.apradiso.2016.12.040.
  • [38] M.M. Hosamani, N.M. Badiger Determination of effective atomic number of composite materials using backscattered gamma photons – a novel method Chem Phys. Lett, 2018. https://doi.org/10.1016/j.cplett.2018.02.012.
  • [39]Perisanoglu U., Kavaz E., Tekin H.O., Armoosh S.R., Ekinci N., Oltulu M. Comparison of gamma and neutron shielding competences of Fe–Cu- and brassadded Portland cement pastes: an experimental and Monte Carlo study. Appl. Phys. A Mater. Sci. Process., 2020. https://doi.org/10.1007/s00339-020-03648-6.
  • [40] Saddeek Y.B., Issa S.A.M., Guclu E.E.A., Kilicoglu O., Susoy G., Tekin H.O. Alkaline phosphate glasses and synergistic impact of germanium oxide (GeO2) additive: mechanical and nuclear radiation shielding behaviors.Ceram.Int., 2020. https://doi.org/10.1016/j.ceramint.2020.03.254.
  • [41] Tekin H.O. MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3×3 inch NaI(Tl) detector and comparison with XCOM and Monte Carlo data. Sci. Technol.Nucl.Install., 2016. https://doi.org/10.1155/2016/6547318, 2016.
  • [42]Alatawi A., Alsharari A.M., Issa S.A.M., Rashad M., Darwish A.A.A., Saddeek Y.B., Tekin H.O. Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: an experimental investigation. Ceram. Int., 2020. https://doi.org/10.1016/j.ceramint.2019.10.069.
  • [43] Issa Shams A.M., Susoy G., Ali A.M., Tekin H.O., Saddeek Y.B., Al-Hajry A., Algarni H., Anjana P.S., Agar O. The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties. Appl. Phys. A Mater. Sci. Process., 2019. https://doi.org/10.1007/s00339-019-3169-5.
  • [44] Kara U., Issa S.A.M., Yorgun N.Y., Kilicoglu O., Rashad M., Abuzaid M.M., Kavaz E., Tekin H.O. Optical, structural and gamma ray shielding properties of dolomite doped lithium borate glasses for radiation shielding applications. J. NonCryst. Solids, 2020. https://doi.org/10.1016/j.jnoncrysol.2020.120049.
  • [45] Kavaz E., Ekinci N. A study of energy absorption and exposure buildup factors in medicinal samples. Asian J. Chem., 2016. .https://doi.org/10.14233/ajchem.2016.19740.
  • [46]M.L. Taylor, R.L. Smith, F. Dossing, R.D. Franich. Robust calculation of effective atomic numbers: the Auto-Zeff software Med Phys, 2012. https://doi.org/10.1118/1.3689810.
  • [47]S. Gowda, S. Krishnaveni, R. Gowda. Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV. Nucl Instrum Methods B, 2005. https://doi.org/10.1016/j.nimb.2005.05.048.
  • [48] M.F. Kaplan Concrete radiation shielding John Wiley & Sons Inc, New York (1989).
  • [49]B. Alim, Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software, Journal of the Institute of Science and Technology, 2020. https://doi.org/10.21597/jist.640027.

An Investigation on Radiation Shielding Properties of Borosilicate Glass Systems

Yıl 2021, , 99 - 108, 31.07.2021
https://doi.org/10.22399/ijcesen.960151

Öz

The aim of this research is to examine the radiation shielding properties of 5B2O3-40SiO2-(55-x)Al2O3-xBaO (BSABa-x) glass systems, which are containing barium and aluminum oxide added to borosilicate glasses, with varying from 25 to 34 weight fractions. Shielding parameters, such as linear attenuation coefficients (LAC), mass attenuation coefficients (MAC), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff), half-value layer (HVL), tenth-value layer (TVL), effective atomic weight (Aeff), exposure buildup factors (EBF) and energy absorption buildup factors (EABF) enable us to obtain information about the radiation shielding power of composite glass material groups. Therefore, the mass attenuation coefficients (MAC), for the 0.015–15 MeV gamma-ray energies are obtained by using the Py-MLBUF online software to determine photon shielding parameters of BSABa-x glasses. The results are shown that the glass which contains higher BaO concentration has higher mass attenuation coefficients. BSABa-34 glass has the highest MACs, ranging from 0.111 cm2/g to 90.400 cm2/g, while BSABa-25 glass has the lowest values, ranging from 0.099 cm2/g to 69.000 cm2/g. The BSABa-34 glass with the highest BaO contribution has the thinnest MFP and HVL values. In addition, photon buildup is minimized by adding BaO to the BSABa-x glasses. Accordingly, we can conclude that adding BaO to aluminum borosilicate glasses at increasing rates, improves nuclear radiation resistance properties.

Kaynakça

  • [1]A.S. Abouhaswa, H.O. Tekin, E. Kavaz, U. Perisanoglu. Optical and nuclear radiation protection characteristics of lithium bismo borate glasses: Role of ZrO2 substitution. Radiation Physics and Chemistry, 2021. https://doi.org/10.1016/j.radphyschem.2021.109428.
  • [2] H.O.Tekin, L.R.P. Kassab, Shams A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu. Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceramic International, 2019. https://doi.org/10.1016/j.ceramint.2019.08.204.
  • [3] Singh J, Singh H, Sharma J, Singh T, Singh PS. Fusible alloys: a potential candidate for gamma rays shield design. Prog. Nucl. Energy, 2018. https://doi.org/10.1016/j.pnucene.2018.04.002.
  • [4] Kaewkhao J., Pokaipisit A., Limsuwan P. Study on borate glass system containing with Bi2O3 and BaO for gamma-rays shielding materials: Comparison with PbO. Journal of Nuclear Materials 2010; 399: 38–40.
  • [5] Sodhi K.S., Krishna S., Saxena A.K., Sinha A., Khandelwal N., Lee E.Y. Clinical application of “Justification” and “Optimization” principle of ALARA in pediatric CT imaging:‘how many children can be protected from unnecessary radiation?’. Europ. Jour. Rad. 2015. https://doi.org/10.1016/j.ejrad.2015.05.030.
  • [6] S.A.M. Issa. Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat.Phys.Chem., 2016. 10.1016/j.radphyschem.2015.11.025.
  • [7] N. Singh, K.J. Singh, K. Singh, H. Singh. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials. Nucl. Instrum. Meth. Phys. Res. B 225 (2004) 305–309.
  • [8] Ab Latif Wani, Anjum Ara, Jawed Ahmad Usmani. Lead toxicity: a review. Interdisiplinary toxicology, 2015. https://doi.org/10.1515/intox-2015-0009.
  • [9] Monisha Jaıshankar, Tenzin Tseten, Naresh Anbalagan, Blessy B. Mathew , Krishnamurthy N. Beeregowda. Toxicity, mechanism and health effects of some heavy metals. Interdisiplinary toxicology, 2014. https://doi.org/10.2478/intox-2014-0009.
  • [10] Y.Al-Hadeethi, S.A.Tijani. The use of lead-free transparent 50BaO-(50-x)borosilicate-xBi2O3 glass system as radiation shields in nuclear medicine. Journal of Alloys and Compounds, 2019. https://doi.org/10.1016/j.jallcom.2019.06.259.
  • [11] H.O. Tekin, O. Kilicoglu. The influence of gallium (Ga) additive on nuclear radiation shielding effectiveness of Pd/Mn binary alloys. Journal of Alloys and Comp., 2019.https://doi.org/10.1016/j.jallcom.2019.152484.
  • [12] Ersundu A.E., Buyukyildiz M., Celikbilek Ersundu M., Sakar E., Kurudirek M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Progress in Nuclear Energy, 2018. https://doi.org/10.1016/j.pnucene.2017.10.008.
  • [13] P.A. Meyer, M.J. Brown, H. Falk. Global approach to reducing lead exposure and poisoning Mutat. Res. Rev. Mutat.Res., 2008.https://doi.org/10.1016/j.mrrev.2008.03.003.
  • [14] K.A. Fetterly, D.J. Magnuson, G.M. Tannahill, M.D. Hindal, V. Mathew. Effective use of radiation shields to minimize operator dose during invasive cardiologyprocedures. JACC Cardiovasc. Interv., 2011. https://doi.org/10.1016/j.jcin.2011.05.027.
  • [15] Tijani S.A., Kamal S.M., Al-Hadeethi Y., Arib M., Hussein M.A., Wageh S., et al. Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies. J. Alloy Comp., 2018. https://doi.org/10.1016/jjallcom.2018.01.109.
  • [16] M.A.M.Uosif, A.M.A. Mostafa Shams A.M.Issa, H.O.Tekin, Z.A. Alrowaili, O.Kilicoglu. Structural, mechanical and radiation shielding properties of newly developed tungsten lithium borate glasses: an experimental study. Journal of Non-Crystalline Solids, 2020.https://doi.org/10.1016/j.jnoncrysol.2019.119882.
  • [17] E.Kavaz, H.O.Tekin, G.Kilic, G.Susoy. Newly developed Zinc-Tellurite glass system: An experimental investigation on impact of Ta2O5 on nuclear radiation shielding ability. Journal of Non-Crystalline Solids, 2020.https://doi.org/10.1016/j.jnoncrysol.2020.120169.
  • [18] H.A.Saudi, H.O.Tekin, Hesham M.H. Zakalyde Shams, A.M.Issa, G.Susoy, M.Zhukovsky. The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. Optical Materials, 2021. https://doi.org/10.1016/j.optmat.2021.110948.
  • [19] G. Kilic, S. Issa, E. İlik, O. Kilicoglu, H.O. Tekin. A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: Synthesis, optical, physical and nuclear radiation shielding properties. Ceramics International, 2021. https://doi.org/10.1016/j.ceramint.2020.09.103.
  • [20]El-Sayed A. Waly, Michael A. Fusco, Mohamed A. Bourham. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Ann. Nucl. Energy, 2016. https://doi.org/10.1016/j.anucene.2016.05.028.
  • [21]R. Wu, J.D. Myers, M.J. Myers. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser Proc SPIE – Solid State Lasers X, 4267 (2001), pp. 56-60.
  • [22] J. Hubbell. Photon mass attenuation and energy-absorption coefficients Int J Appl Radiat Isot, 1982. https://doi.org/10.1016/0020-708X(82)90248-4.
  • [23]G. Susoy, E.E.A. Guclu, O. Kilicoglu, M. Kamislioglu, M.S. Al-Buriahi, M.M. Abuzaid, H.O. Tekin. The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Materials Chemistry and Physics, 2020. https://doi.org/10.1016/j.matchemphys.2019.122481.
  • [24] C. Jayachandran Calculated effective atomic number and kerma values for tissue-equivalent and dosimetry materials Phys Med Biol, 16 (4) (1971), p. 617.
  • [25]M. Taylor, R. Franich, J. Trapp, P. Johnston. Electron interaction with gel dosimeters: effective atomic numbers for collisional, radiative and total interaction processes Radiat Res, 171 (1) (2009), pp. 123-126.
  • [26]Mohammad W. Marashdeh, Ibrahim F. Al-Hamarneh, Eid M. Abdel Munem, , A. A. Tajuddin, A. Ariffin, Saleh Al-Omari. Determining the mass attenuation coefficient, effective atomic number, and electron density of raw wood and binderless particleboards of Rhizophora spp. by using Monte Carlo simulation, Results in Physics, 2015.https://doi.org/10.1016/j.rinp.2015.08.009.
  • [27] Kulwinder Singh Mann, Sukhmanjit Singh Mann. Py-MLBUF: Development of an online-platform for gamma-ray shielding calculations and investigations. Annals of Nuclear Energy, 2021. https://doi.org/10.1016/j.anucene.2020.107845.
  • [28]S.Kaewjaeng, J.Kaewkhao, P.Limsuwan, U.Maghanemi. Effect of BaO on Optical, Physical and Radiation Shielding Properties of SiO2-B2O3-Al2O3-CaO-Na2O Glasses System. Procedia Engineering, 2012. https://doi.org/10.1016/j.proeng.2012.02.058.
  • [29] Singh K., Singh H., Sharma V., Nathuram R., Khanna A., Kumar R., Bharri S.S., Sahora H.S. Gamma-ray attenuation coefficient in bismuth borate glass ,Journal of Nuclear Instruments and Methods in Physics Research 2002; 194:1-6.
  • [30] Sing S., Kumar A., Sing D., Thind K.S. Barium-borate-flyash-glasses: As radiation shielding materials, Journal of Nuclear Instruments and Methods in Physics Research, 2008; 206:140-146.
  • [31]E.Kavaz, F.I.El Agawany, H.O.Tekin, U.Perisanoglu, Y.S.Rammah. Nuclear radiation shielding using barium borosilicate glass ceramics, 2020. https://doi.org/10.1016/j.jpcs.2020.109437.
  • [32] U. Kara, S.A.M. Issa, G. Susoy, M Rashad, E. Kavaz, N.Y. Yorgun, H.O.Tekin. Synergistic effect of serpentine mineral on Li2B4O7 glasses: optical, structural and nuclear radiation shielding properties. Applied Physics A, 2020. 10.1007/s00339-020-3397-8.
  • [33] H.O. Tekin, Shams A.M. Issa, E. Kavaz. The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express., 2019. 10.1088/2053-1591/ab4cb5.
  • [34] M.M. Abuzaid, G. Susoy, S.A.M. Issa, W. Elshami, O. Kilicoglu, H.O. Tekin. Relationship between melting-conditions and gamma shielding performance of fluoro-sulfo-phosphate (FPS) glass systems: a comparative investigation. Ceramics International, 2020. https://doi.org/10.1016/j.ceramint.2020.03.065.
  • [35] O. Kilicoglu, H.O. Tekin. Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceramics International, 2020. https://doi.org/10.1016/j.ceramint.2019.09.095.
  • [36]U. Kara, E. Kavaz, ShamsA.M.Issa, M. Rashad, G. Susoy, A.M.A. Mostafa, N. Yildiz Yorgun, H.O. Tekin. Optical, structural and nuclear radiation shielding properties of Li2B4O7 glasses: efect of boron mineral additive. Applied Physics A, 126 (2020), p. 261, 10.1007/s00339-020-3446-3
  • [37] H.O. Tekin, V.P. Singh, T. Manici. Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code Appl. Radiat. Isot., 2017. 10.1016/j.apradiso.2016.12.040.
  • [38] M.M. Hosamani, N.M. Badiger Determination of effective atomic number of composite materials using backscattered gamma photons – a novel method Chem Phys. Lett, 2018. https://doi.org/10.1016/j.cplett.2018.02.012.
  • [39]Perisanoglu U., Kavaz E., Tekin H.O., Armoosh S.R., Ekinci N., Oltulu M. Comparison of gamma and neutron shielding competences of Fe–Cu- and brassadded Portland cement pastes: an experimental and Monte Carlo study. Appl. Phys. A Mater. Sci. Process., 2020. https://doi.org/10.1007/s00339-020-03648-6.
  • [40] Saddeek Y.B., Issa S.A.M., Guclu E.E.A., Kilicoglu O., Susoy G., Tekin H.O. Alkaline phosphate glasses and synergistic impact of germanium oxide (GeO2) additive: mechanical and nuclear radiation shielding behaviors.Ceram.Int., 2020. https://doi.org/10.1016/j.ceramint.2020.03.254.
  • [41] Tekin H.O. MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3×3 inch NaI(Tl) detector and comparison with XCOM and Monte Carlo data. Sci. Technol.Nucl.Install., 2016. https://doi.org/10.1155/2016/6547318, 2016.
  • [42]Alatawi A., Alsharari A.M., Issa S.A.M., Rashad M., Darwish A.A.A., Saddeek Y.B., Tekin H.O. Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: an experimental investigation. Ceram. Int., 2020. https://doi.org/10.1016/j.ceramint.2019.10.069.
  • [43] Issa Shams A.M., Susoy G., Ali A.M., Tekin H.O., Saddeek Y.B., Al-Hajry A., Algarni H., Anjana P.S., Agar O. The effective role of La2O3 contribution on zinc borate glasses: radiation shielding and mechanical properties. Appl. Phys. A Mater. Sci. Process., 2019. https://doi.org/10.1007/s00339-019-3169-5.
  • [44] Kara U., Issa S.A.M., Yorgun N.Y., Kilicoglu O., Rashad M., Abuzaid M.M., Kavaz E., Tekin H.O. Optical, structural and gamma ray shielding properties of dolomite doped lithium borate glasses for radiation shielding applications. J. NonCryst. Solids, 2020. https://doi.org/10.1016/j.jnoncrysol.2020.120049.
  • [45] Kavaz E., Ekinci N. A study of energy absorption and exposure buildup factors in medicinal samples. Asian J. Chem., 2016. .https://doi.org/10.14233/ajchem.2016.19740.
  • [46]M.L. Taylor, R.L. Smith, F. Dossing, R.D. Franich. Robust calculation of effective atomic numbers: the Auto-Zeff software Med Phys, 2012. https://doi.org/10.1118/1.3689810.
  • [47]S. Gowda, S. Krishnaveni, R. Gowda. Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30-1333 keV. Nucl Instrum Methods B, 2005. https://doi.org/10.1016/j.nimb.2005.05.048.
  • [48] M.F. Kaplan Concrete radiation shielding John Wiley & Sons Inc, New York (1989).
  • [49]B. Alim, Determination of Radiation Protection Features of the Ag2O Doped Boro-Tellurite Glasses Using Phy-X / PSD Software, Journal of the Institute of Science and Technology, 2020. https://doi.org/10.21597/jist.640027.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Duygu Şen Baykal 0000-0001-9833-9392

Huseyin Ozan Tekin 0000-0002-0997-3488

R. Burcu Çakırlı Mutlu 0000-0002-8400-1718

Yayımlanma Tarihi 31 Temmuz 2021
Gönderilme Tarihi 30 Haziran 2021
Kabul Tarihi 31 Temmuz 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Şen Baykal, D., Tekin, H. O., & Çakırlı Mutlu, R. B. (2021). An Investigation on Radiation Shielding Properties of Borosilicate Glass Systems. International Journal of Computational and Experimental Science and Engineering, 7(2), 99-108. https://doi.org/10.22399/ijcesen.960151

Cited By





Computation of Neutron Coefficients for B2O3 reinforced Composite
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1290497






Assessment of Gamma Ray Shielding Properties for Skin
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1247867


























Simulation of Neutrons Shielding Properties for Some Medical Materials
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1032359


Fast Neutrons Shielding Properties for HAP-Fe2O3 Composite Materials
International Journal of Computational and Experimental Science and Engineering
https://doi.org/10.22399/ijcesen.1012039