Araştırma Makalesi
BibTex RIS Kaynak Göster

Vermikülitin katkı maddesi olarak kullanıldığı geçirgen betonun performans analizi

Yıl 2025, Cilt: 2 Sayı: 2, 54 - 59, 25.12.2025

Öz

Geçirimli beton, suyu emme ve yüzey akışını azaltma kabiliyetiyle bilinir, ancak genellikle düşük basınç dayanımından muzdariptir. Bu sınırlamayı gidermek için bu çalışma, beton dayanımını artırma potansiyeline sahip bir katkı malzemesi olarak vermikülitin dahil edilmesini araştırmaktadır. Araştırmanın amacı, değişen vermikülit içeriğinin geçirimli betonun basınç dayanımı, gözenekliliği ve geçirgenliği üzerindeki etkisini analiz etmektir. Laboratuvar testleri, toplam agrega ağırlığının %0, %5, %10 ve %15'i oranında vermikülit kullanılarak gerçekleştirilmiştir. Silindirik numuneler (15x30 cm) 7 ve 28. günlerde basınç dayanımı açısından test edilirken, gözeneklilik ve geçirgenlik 28. günde değerlendirilmiştir. Sonuçlar, 28 günde basınç dayanımında 10,55 MPa'dan (%0) 17,08 MPa'ya (%15) bir artış, gözeneklilikte %19,13'ten %3,14'e bir azalma ve geçirgenlikte 0,070 cm/s'den 0,008 cm/s'ye bir azalma olduğunu göstermiştir. Bu azalmalar, vermikülitin agregalar arasındaki boşlukları doldurarak su akış yollarını sınırlamasına atfedilmektedir. Sonuç olarak, vermikülit geçirgen betonun mekanik performansını etkili bir şekilde artırırken, aşırı kullanımı drenaj işlevini tehlikeye atmaktadır. %5 vermikülit ilavesi, dayanım ve sızma kapasitesi arasında bir denge sağlayan optimum sınır olarak kabul edilmektedir.

Etik Beyan

Bu araştırma, standart koşullar altında Bekasi'nin Setu İlçesi, Burangkeng'deki İnşaat Mühendisliği Laboratuvarı'nda deneysel yöntemler kullanılarak gerçekleştirilmiştir. Tüm deney numuneleri, ACI 522R-2010 standart prosedürlerine uygun olarak hazırlanmış ve test edilmiştir. Bu çalışma, insan katılımcılar, hayvanlar veya hassas veriler içermediğinden etik kurul onayı gerektirmemektedir.

Destekleyen Kurum

Jakarta Global University

Teşekkür

Yazarlar, deneysel çalışma sırasında sağladıkları olanaklar ve teknik yardımlar için Batı Java, Burangkeng'deki İnşaat Mühendisliği Laboratuvarı'na içten teşekkürlerini sunmak isterler.

Kaynakça

  • Rahmadillah, A., Adhitya, B., Putri, F., and Sari, L. (2025) Balancing strength and porosity: A critical evaluation of cement substitution with metakaolin in porous concrete, TEKNIKA: Jurnal Sains dan Teknologi, 21: 1.
  • de Assis Neto, P.C., et al. (2023) Expanded Vermiculite: A Short Review about Its Production, Characteristics, and Effects on the Properties of Lightweight Mortars, Buildings, 13(3).
  • Merino-Lechuga, A.M., et al. (2023) Accelerated Carbonation of Vibro-Compacted Porous Concrete for Eco-Friendly Precast Elements, Materials, 16(8).
  • Sutandar, E., Supriyadi, A., and Salim, D. (2024) Beton Berpori Precast, Proceedings Seminar Nasional Teknik Sipil.
  • Bilal, H., Gao, X., Cavaleri, L., Khan, A., and Ren, M. (2024) Mechanical, Durability, and Microstructure Characterization of Pervious Concrete Incorporating Polypropylene Fibers and Fly Ash/Silica Fume, Journal of Composites Science, 8(11).
  • Lyu, Q., Dai, P., and Chen, A. (2024) Correlations among physical properties of pervious concrete with different aggregate sizes and mix proportions, Construction and Building Materials, 370.
  • Cao, Q., Zhou, J., Xu, W., and Yuan, X. (2024) Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete, Materials, 17(1).
  • Anwar, F.H., El-Hassan, H., Hamouda, M., El-Mir, A., and Mo, K.H. (2024) Performance evaluation of pervious geopolymer concrete incorporating recycled concrete aggregate, International Journal of Sustainable Engineering, 17(1): 149–166.
  • Santoso, T.B., Ikhwan, Mz., and Al Zakina, B.L. (2024) Analisis Beton Porous Menggunakan Agregat Kasar Bergradasi 20 mm Berdasarkan Nilai Kuat Tekan dan Porositas, Jurnal Teknik Sipil.
  • Rd, E.A., Rangan, P.R., Palembangan, M., and Kunci, K. (2022) Analisis Kinerja Beton Berpori, Journal Dynamic sainT, 7(2): 1–8.
  • Latif, A.A., Putrajaya, R., and Ing, D.S. (2023) A Review of Porous Concrete Pavement: Compressive Strength and Clogging Investigation, Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(3): 128–138.
  • Muda, M.M., Legese, A.M., Urgessa, G., and Boja, T. (2023) Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates, Construction Materials, 3(1): 81–92.
  • Zhang, Y., Li, H., Abdelhady, A., Yang, J., and Wang, H. (2021) Effects of specimen shape and size on the permeability and mechanical properties of porous concrete, Construction and Building Materials, 266.
  • Amalia, N. (2023) Pengaruh Vermikulit terhadap Karakteristik Beton Ringan, Prosiding Seminar Nasional Teknik Sipil.
  • Rashad, A.M. (2016) Vermiculite as a construction material – A short guide for Civil Engineer, Construction and Building Materials, 125: 53–64.
  • Koksal, F., Nazlı, T., Benli, A., Gencel, O., and Kaplan, G. (2021) The effects of cement type and expanded vermiculite powder on the thermo-mechanical characteristics and durability of lightweight mortars at high temperature and RSM modelling, Case Studies in Construction Materials, 15.
  • Dian, L., and Syahril, S. (2023) Effect of vermiculite addition on the compressive strength of concrete, AIP Conference Proceedings.
  • Artanti, L.D., and Mushthofa, M. (2023) Pengaruh Penambahan Vermikulit pada Beton Normal terhadap Kuat Lentur Balok Terdukung Sederhana, Jurnal Teknik Sipil dan Infrastruktur.
  • Azad, A., Mousavi, S.F., Karami, H., Farzin, S., and Singh, V.P. (2021) The effect of vermiculite and quartz in porous concrete on reducing storm-runoff pollution, ISH Journal of Hydraulic Engineering, 27(2): 144–152.
  • American Concrete Institute. (2010) ACI 522R-10: Report on Pervious Concrete, Farmington Hills, MI: ACI.
  • Azad, A., Mousavi, S.F., Karami, H., and Farzin, S. (2018) Using waste vermiculite and dolomite as eco-friendly additives for improving the performance of porous concrete, Engineering Journal, 22(5): 87–104.
  • ASTM International. (2020) ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, West Conshohocken, PA, USA. [Online]. Available: www.astm.org
  • Prakash, K.E., Sangeetha, D.M., and Bagwan, S. (2019) An experimental study on partial replacement of fine aggregate by vermiculate and cement by marble powder, Lecture Notes in Civil Engineering, Springer, 25: 897–906.
  • ASTM International. (2018) ASTM C33 / C33M-18: Standard Specification for Concrete Aggregates, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2017) ASTM C117-17: Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2015) ASTM C127-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2017) ASTM C29 / C29M-17a: Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org

Performance analysis of pervious concrete incorporating vermiculite as an additive material

Yıl 2025, Cilt: 2 Sayı: 2, 54 - 59, 25.12.2025

Öz

Pervious concrete is known for its ability to absorb water and reduce surface runoff, but it often suffers from low compressive strength. To address this limitation, this study investigates the incorporation of vermiculite as an additive material with the potential to enhance concrete strength. The objective of the research is to analyze the effect of varying vermiculite content on the compressive strength, porosity, and permeability of pervious concrete. Laboratory tests were conducted using vermiculite at 0%, 5%, 10%, and 15% by total aggregate weight. Cylindrical specimens (15×30 cm) were tested for compressive strength at 7 and 28 days, while porosity and permeability were evaluated at 28 days. The results indicated an increase in compressive strength from 10.55 MPa (0%) to 17.08 MPa (15%), a reduction in porosity from 19.13% to 3.14%, and a decrease in permeability from 0.070 cm/s to 0.008 cm/s at 28 days. These reductions are attributed to vermiculite filling the voids between aggregates, thereby limiting water flow paths. Consequently, while vermiculite effectively enhances the mechanical performance of pervious concrete, excessive use compromises its drainage function. A 5% vermiculite addition is considered the optimal limit, maintaining a balance between strength and infiltration capability.

Etik Beyan

This research was conducted using experimental methods at the Civil Engineering Laboratory in Burangkeng, Setu District, Bekasi, under standardized conditions. All test specimens were prepared and tested according to standard procedures outlined in ACI 522R-2010. This study did not involve human participants, animals, or sensitive data and therefore did not require ethical approval.

Destekleyen Kurum

Jakarta Global University

Teşekkür

The authors would like to express their sincere gratitude to the Civil Engineering Laboratory in Burangkeng, West Java, for providing facilities and technical assistance during the experimental work.

Kaynakça

  • Rahmadillah, A., Adhitya, B., Putri, F., and Sari, L. (2025) Balancing strength and porosity: A critical evaluation of cement substitution with metakaolin in porous concrete, TEKNIKA: Jurnal Sains dan Teknologi, 21: 1.
  • de Assis Neto, P.C., et al. (2023) Expanded Vermiculite: A Short Review about Its Production, Characteristics, and Effects on the Properties of Lightweight Mortars, Buildings, 13(3).
  • Merino-Lechuga, A.M., et al. (2023) Accelerated Carbonation of Vibro-Compacted Porous Concrete for Eco-Friendly Precast Elements, Materials, 16(8).
  • Sutandar, E., Supriyadi, A., and Salim, D. (2024) Beton Berpori Precast, Proceedings Seminar Nasional Teknik Sipil.
  • Bilal, H., Gao, X., Cavaleri, L., Khan, A., and Ren, M. (2024) Mechanical, Durability, and Microstructure Characterization of Pervious Concrete Incorporating Polypropylene Fibers and Fly Ash/Silica Fume, Journal of Composites Science, 8(11).
  • Lyu, Q., Dai, P., and Chen, A. (2024) Correlations among physical properties of pervious concrete with different aggregate sizes and mix proportions, Construction and Building Materials, 370.
  • Cao, Q., Zhou, J., Xu, W., and Yuan, X. (2024) Study on the Preparation and Properties of Vegetation Lightweight Porous Concrete, Materials, 17(1).
  • Anwar, F.H., El-Hassan, H., Hamouda, M., El-Mir, A., and Mo, K.H. (2024) Performance evaluation of pervious geopolymer concrete incorporating recycled concrete aggregate, International Journal of Sustainable Engineering, 17(1): 149–166.
  • Santoso, T.B., Ikhwan, Mz., and Al Zakina, B.L. (2024) Analisis Beton Porous Menggunakan Agregat Kasar Bergradasi 20 mm Berdasarkan Nilai Kuat Tekan dan Porositas, Jurnal Teknik Sipil.
  • Rd, E.A., Rangan, P.R., Palembangan, M., and Kunci, K. (2022) Analisis Kinerja Beton Berpori, Journal Dynamic sainT, 7(2): 1–8.
  • Latif, A.A., Putrajaya, R., and Ing, D.S. (2023) A Review of Porous Concrete Pavement: Compressive Strength and Clogging Investigation, Journal of Advanced Research in Applied Sciences and Engineering Technology, 29(3): 128–138.
  • Muda, M.M., Legese, A.M., Urgessa, G., and Boja, T. (2023) Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates, Construction Materials, 3(1): 81–92.
  • Zhang, Y., Li, H., Abdelhady, A., Yang, J., and Wang, H. (2021) Effects of specimen shape and size on the permeability and mechanical properties of porous concrete, Construction and Building Materials, 266.
  • Amalia, N. (2023) Pengaruh Vermikulit terhadap Karakteristik Beton Ringan, Prosiding Seminar Nasional Teknik Sipil.
  • Rashad, A.M. (2016) Vermiculite as a construction material – A short guide for Civil Engineer, Construction and Building Materials, 125: 53–64.
  • Koksal, F., Nazlı, T., Benli, A., Gencel, O., and Kaplan, G. (2021) The effects of cement type and expanded vermiculite powder on the thermo-mechanical characteristics and durability of lightweight mortars at high temperature and RSM modelling, Case Studies in Construction Materials, 15.
  • Dian, L., and Syahril, S. (2023) Effect of vermiculite addition on the compressive strength of concrete, AIP Conference Proceedings.
  • Artanti, L.D., and Mushthofa, M. (2023) Pengaruh Penambahan Vermikulit pada Beton Normal terhadap Kuat Lentur Balok Terdukung Sederhana, Jurnal Teknik Sipil dan Infrastruktur.
  • Azad, A., Mousavi, S.F., Karami, H., Farzin, S., and Singh, V.P. (2021) The effect of vermiculite and quartz in porous concrete on reducing storm-runoff pollution, ISH Journal of Hydraulic Engineering, 27(2): 144–152.
  • American Concrete Institute. (2010) ACI 522R-10: Report on Pervious Concrete, Farmington Hills, MI: ACI.
  • Azad, A., Mousavi, S.F., Karami, H., and Farzin, S. (2018) Using waste vermiculite and dolomite as eco-friendly additives for improving the performance of porous concrete, Engineering Journal, 22(5): 87–104.
  • ASTM International. (2020) ASTM C642-13: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, West Conshohocken, PA, USA. [Online]. Available: www.astm.org
  • Prakash, K.E., Sangeetha, D.M., and Bagwan, S. (2019) An experimental study on partial replacement of fine aggregate by vermiculate and cement by marble powder, Lecture Notes in Civil Engineering, Springer, 25: 897–906.
  • ASTM International. (2018) ASTM C33 / C33M-18: Standard Specification for Concrete Aggregates, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2017) ASTM C117-17: Standard Test Method for Materials Finer than 75-μm (No. 200) Sieve in Mineral Aggregates by Washing, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2015) ASTM C127-15: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
  • ASTM International. (2017) ASTM C29 / C29M-17a: Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate, West Conshohocken, PA, USA. [Online]. Available: https://www.astm.org
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Yapım Mühendisliği, Yapı Malzemeleri
Bölüm Araştırma Makalesi
Yazarlar

Rahmad Pasca Try Valent 0009-0001-2371-4247

Lintang Dian Artanti Bu kişi benim 0000-0003-1349-6132

Tata Ardhita Pramesti Bu kişi benim 0009-0002-9364-5037

Gönderilme Tarihi 23 Temmuz 2025
Kabul Tarihi 1 Eylül 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 2

Kaynak Göster

EndNote Try Valent RP, Dian Artanti L, Ardhita Pramesti T (01 Aralık 2025) Performance analysis of pervious concrete incorporating vermiculite as an additive material. International Journal of Engineering Approaches 2 2 54–59.

32861

Amasya Üniversitesi tarafından yapılan bu eser CC BY-NC https://creativecommons.org/licenses/by-nc/4.0/ altında lisanslanmıştır.