Araştırma Makalesi
BibTex RIS Kaynak Göster

Faz değişim malzemesi ile çift borulu gizli ısı depolamada kanat yerleşim düzeninin erime performansı üzerine etkisi

Yıl 2025, Cilt: 2 Sayı: 1, 1 - 6, 26.06.2025

Öz

Enerji depolama teknolojileri, enerji kaynaklarının verimli kullanımı ve sürdürülebilirlik açısından giderek daha önemli hale gelmektedir. Bu bağlamda, faz değişim malzemeleri (FDM'ler), yüksek enerji yoğunlukları ve sabit sıcaklıklarda enerji depolama kapasiteleriyle öne çıkmaktadır. FDM’lerin düşük ısıl iletkenlikleri, bu malzemelerin pratik uygulamalarda ve ticari kullanımlarda karşılaştığı en büyük zorluklardan biridir. Bu nedenle, FDM ile enerji depolama sistemlerinde ısıl iletkenliği artırmak amacıyla kanat kullanımı, nano partikül eklenmesi ve metal köpük uygulamaları gibi çeşitli yöntemler geliştirilmiştir. Bu çalışmada da kanat kullanımı tercih edilmiş ancak literatür çalışmalarından farklı olarak kanatçıklar FDM haznesinin alt ve üst bölgelerinde farklı oranlarda yoğunlaştırılmış ve bu düzensiz kanat dağılım oranlarının doğal konveksiyon akışına ve şarj süresine etkileri birlikte incelenmiştir. Bu doğrultuda beş farklı kanat yerleşim konfigürasyonu modellenmiştir. Modeller için sayısal analizler iki boyutlu ve zamana bağlı olarak gerçekleştirilmiştir. Erime analizlerinin gerçekleştirilmesinde entalpi-porozite yöntemi kullanılmıştır. Parametrik analizler sonucunda, kanatların tümünün alt bölgeye yoğunlaştırıldığı konfigürasyonun en iyi erime performansı gösterdiği ve şarj süresini temel duruma göre %27,2 oranında kısalttığı belirlenmiştir.

Kaynakça

  • Chebli, F., and Mechighel, F. (2025) Phase change materials: classification, use, phase transitions, and heat transfer enhancement techniques: a comprehensive review, Journal of Thermal Analysis and Calorimetry, 1-59.
  • Wu, S., Yan, T., Kuai, Z., and Pan, W. (2020) Thermal conductivity enhancement on phase change materials for thermal energy storage: A review, Energy Storage Materials, 25: 251-295.
  • Choure, B. K., Alam, T., and Kumar, R. (2023) A review on heat transfer enhancement techniques for PCM based thermal energy storage system, Journal of Energy Storage, 72, 108161.
  • Abdulateef, A. M., Mat, S., Sopian, K., Abdulateef, J., and Gitan, A. A. (2017) Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, Solar Energy, 155: 142-153.
  • Sarani, I., Payan, S., Nada, S. A., and Payan, A. (2020) Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles, Applied Thermal Engineering, 176: 115017.
  • Mahdi, J. M., Lohrasbi, S., Ganji, D. D., and Nsofor, E. C. (2018) Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, International Journal of Heat and Mass Transfer, 124: 663-676.
  • Hajizadeh, M. R., Keshteli, A. N., and Bach, Q. V. (2020) Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle, Journal of Molecular Liquids, 317: 114188.
  • Patel, J. R., Rathod, M. K., and Sheremet, M. (2022) Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin, Journal of Energy Storage, 50: 104167.
  • Rozenfeld, A., Kozak, Y., Rozenfeld, T., and Ziskind, G. (2017) Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin, International Journal of Heat and Mass Transfer, 110: 692-709.
  • Anish, R., Joybari, M. M., Seddegh, S., Mariappan, V., Haghighat, F., and Yuan, Y. (2021) Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation, Renewable Energy, 163: 423-436.
  • Huang, Y., Song, L., Wu, S., and Liu, X. (2022) Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool, Applied Thermal Engineering, 200: 117658.
  • Tao, Y. B., and He, Y. L. (2015) Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Applied Energy, 143, 38-46.
  • Mahdi, M. S., Mahood, H. B., Mahdi, J. M., Khadom, A. A., and Campbell, A. N. (2020) Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube, Energy Conversion and Management, 203: 112238.
  • Alnakeeb, M. A., Salam, M. A. A., and Hassab, M. A. (2021) Eccentricity optimization of an inner flat-tube double-pipe latent-heat thermal energy storage unit, Case Studies in Thermal Engineering, 25: 100969.
  • Kadivar, M. R., Moghimi, M. A., Sapin, P., and Markides, C. N. (2019) Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store, Journal of Energy Storage, 26: 101030.
  • Yan, P., Fan, W., Yang, Y., Ding, H., Arshad, A., and Wen, C. (2022) Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations, Applied Energy, 327: 120064.
  • Yang, X. H., Tan, S. C., and Liu, J. (2016) Numerical investigation of the phase change process of low melting point metal, International Journal of Heat and Mass Transfer, 100: 899-907.
  • Seddegh, S., Wang, X., and Henderson, A. D. (2015) Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system, Applied thermal engineering, 87: 698-706.
  • Dittus, F. W., and Boelter, L. M. K. (1985) Heat transfer in automobile radiators of the tubular type, International communications in heat and mass transfer, 12(1): 3-22.
  • Darzi, A. R., Farhadi, M., and Sedighi, K. (2012) Numerical study of melting inside concentric and eccentric horizontal annulus, Applied Mathematical Modelling, 36(9): 4080-4086.
  • Nie, C., Chen, Z., Li, H., Liu, X., Liu, J., and Rao, Z. (2025) Petal-shaped fin configurations for enhancing phase change material solidification in a horizontal shell and tube thermal energy storage unit, Journal of Energy Storage, 113: 115685.
  • Tang, S., Song, Y., Liu, P., Wu, X., Xu, Y., Zhou, J., and Li, X. (2025) Design and optimization of a vertical shell-and-tube latent heat thermal energy storage system via discontinuous fins, Renewable Energy, 122568.
  • Luo, J. W., Yaji, K., Chen, L., and Tao, W. Q. (2025) Data-driven multi-fidelity topology design of fin structures for latent heat thermal energy storage, Applied Energy, 377: 124596.
  • Fang, Z., and Zhao, C. (2025) Thermal performance analysis of novel bionic fins in a concentric three-tube latent heat storage system, Renewable Energy, 122607.
  • Wang, C., Yao, S., Chen, X., and Yan, X. (2025) Thermal performance analysis of new bionic “fishbone” fins in a triplex-tube latent heat storage system with single cycle process, Applied Thermal Engineering, 259: 124902.

Effect of fin layout on melting performance in double pipe latent heat storage with phase change material

Yıl 2025, Cilt: 2 Sayı: 1, 1 - 6, 26.06.2025

Öz

Energy storage technologies are becoming increasingly important for the efficient use of energy resources and sustainability. In this context, phase change materials (PCMs) stand out due to their high energy densities and capabilities to store energy at constant temperatures. However, the low thermal conductivity of PCMs presents a significant challenge in practical applications and commercial use. To address this issue, various methods such as fin utilization, the addition of nanoparticles, and the use of metal foams have been developed to enhance the thermal conductivity of PCMs in energy storage systems. In this study, fin utilization was adopted, but unlike previous literature, the fins were concentrated at different ratios in the upper and lower regions of the PCM container, and the effects of these uneven fin distributions on natural convection flow and charging time were simultaneously investigated. Five different fin layout configurations were modeled, and numerical analyses were performed in a two-dimensional and time-dependent manner. The enthalpy-porosity method was used for melting analyses. Parametric analysis results indicated that the configuration with fins concentrated entirely in the lower region exhibited the best melting performance, reducing the charging time by 27.2% compared to the baseline configuration.

Kaynakça

  • Chebli, F., and Mechighel, F. (2025) Phase change materials: classification, use, phase transitions, and heat transfer enhancement techniques: a comprehensive review, Journal of Thermal Analysis and Calorimetry, 1-59.
  • Wu, S., Yan, T., Kuai, Z., and Pan, W. (2020) Thermal conductivity enhancement on phase change materials for thermal energy storage: A review, Energy Storage Materials, 25: 251-295.
  • Choure, B. K., Alam, T., and Kumar, R. (2023) A review on heat transfer enhancement techniques for PCM based thermal energy storage system, Journal of Energy Storage, 72, 108161.
  • Abdulateef, A. M., Mat, S., Sopian, K., Abdulateef, J., and Gitan, A. A. (2017) Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins, Solar Energy, 155: 142-153.
  • Sarani, I., Payan, S., Nada, S. A., and Payan, A. (2020) Numerical investigation of an innovative discontinuous distribution of fins for solidification rate enhancement in PCM with and without nanoparticles, Applied Thermal Engineering, 176: 115017.
  • Mahdi, J. M., Lohrasbi, S., Ganji, D. D., and Nsofor, E. C. (2018) Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger, International Journal of Heat and Mass Transfer, 124: 663-676.
  • Hajizadeh, M. R., Keshteli, A. N., and Bach, Q. V. (2020) Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle, Journal of Molecular Liquids, 317: 114188.
  • Patel, J. R., Rathod, M. K., and Sheremet, M. (2022) Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin, Journal of Energy Storage, 50: 104167.
  • Rozenfeld, A., Kozak, Y., Rozenfeld, T., and Ziskind, G. (2017) Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin, International Journal of Heat and Mass Transfer, 110: 692-709.
  • Anish, R., Joybari, M. M., Seddegh, S., Mariappan, V., Haghighat, F., and Yuan, Y. (2021) Sensitivity analysis of design parameters for erythritol melting in a horizontal shell and multi-finned tube system: Numerical investigation, Renewable Energy, 163: 423-436.
  • Huang, Y., Song, L., Wu, S., and Liu, X. (2022) Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool, Applied Thermal Engineering, 200: 117658.
  • Tao, Y. B., and He, Y. L. (2015) Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Applied Energy, 143, 38-46.
  • Mahdi, M. S., Mahood, H. B., Mahdi, J. M., Khadom, A. A., and Campbell, A. N. (2020) Improved PCM melting in a thermal energy storage system of double-pipe helical-coil tube, Energy Conversion and Management, 203: 112238.
  • Alnakeeb, M. A., Salam, M. A. A., and Hassab, M. A. (2021) Eccentricity optimization of an inner flat-tube double-pipe latent-heat thermal energy storage unit, Case Studies in Thermal Engineering, 25: 100969.
  • Kadivar, M. R., Moghimi, M. A., Sapin, P., and Markides, C. N. (2019) Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store, Journal of Energy Storage, 26: 101030.
  • Yan, P., Fan, W., Yang, Y., Ding, H., Arshad, A., and Wen, C. (2022) Performance enhancement of phase change materials in triplex-tube latent heat energy storage system using novel fin configurations, Applied Energy, 327: 120064.
  • Yang, X. H., Tan, S. C., and Liu, J. (2016) Numerical investigation of the phase change process of low melting point metal, International Journal of Heat and Mass Transfer, 100: 899-907.
  • Seddegh, S., Wang, X., and Henderson, A. D. (2015) Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system, Applied thermal engineering, 87: 698-706.
  • Dittus, F. W., and Boelter, L. M. K. (1985) Heat transfer in automobile radiators of the tubular type, International communications in heat and mass transfer, 12(1): 3-22.
  • Darzi, A. R., Farhadi, M., and Sedighi, K. (2012) Numerical study of melting inside concentric and eccentric horizontal annulus, Applied Mathematical Modelling, 36(9): 4080-4086.
  • Nie, C., Chen, Z., Li, H., Liu, X., Liu, J., and Rao, Z. (2025) Petal-shaped fin configurations for enhancing phase change material solidification in a horizontal shell and tube thermal energy storage unit, Journal of Energy Storage, 113: 115685.
  • Tang, S., Song, Y., Liu, P., Wu, X., Xu, Y., Zhou, J., and Li, X. (2025) Design and optimization of a vertical shell-and-tube latent heat thermal energy storage system via discontinuous fins, Renewable Energy, 122568.
  • Luo, J. W., Yaji, K., Chen, L., and Tao, W. Q. (2025) Data-driven multi-fidelity topology design of fin structures for latent heat thermal energy storage, Applied Energy, 377: 124596.
  • Fang, Z., and Zhao, C. (2025) Thermal performance analysis of novel bionic fins in a concentric three-tube latent heat storage system, Renewable Energy, 122607.
  • Wang, C., Yao, S., Chen, X., and Yan, X. (2025) Thermal performance analysis of new bionic “fishbone” fins in a triplex-tube latent heat storage system with single cycle process, Applied Thermal Engineering, 259: 124902.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Araştırma Makalesi
Yazarlar

Orçun Altınok 0009-0006-5959-4837

Burak Kurşun 0000-0001-5878-3894

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 20 Ocak 2025
Kabul Tarihi 14 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 1

Kaynak Göster

EndNote Altınok O, Kurşun B (01 Haziran 2025) Faz değişim malzemesi ile çift borulu gizli ısı depolamada kanat yerleşim düzeninin erime performansı üzerine etkisi. International Journal of Engineering Approaches 2 1 1–6.

32861

Amasya Üniversitesi tarafından yapılan bu eser CC BY-NC https://creativecommons.org/licenses/by-nc/4.0/ altında lisanslanmıştır.