BibTex RIS Cite

Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems

Year 2009, Volume: 1 Issue: 2, 1 - 14, 01.06.2009

Abstract

This note describes a novel approach to Routh-Padé approximation problem relating to the construction of reduced-order approximants for continuous-time unstable systems. In this method, stability and the first r timemoments/Markov-parameters are preserved as well as the errors between a set of subsequent timemoments/Markov-parameters of the system and those of the model are minimized. For the solution of this problem a method using the concept of Pareto-optimality is proposed. Pareto-optimal curve is the solution of Multi-objective Optimization problem. Evolutionary Algorithm such as real parameter Genetic Algorithm is used to get Paretooptimal curve. The search area for GA is very wide and it usually converges to a point near global optima

References

  • Appiah, R.K, Pade methods of Hurwitz polynomial approximation with application to linear system reduction, Int. J.Control. 29: 39-48, 1979.
  • Ashoor, N. and Singh, V., A note on low order modeling, IEEE Trans. Automat. Contr. 27, 1124-1126, 1982.
  • Ashoor, N. and Singh, V., Remarks on system simplification under consideration of time response, Electron. Lett., 18, 496-497, 1982.
  • Bandyopadhyay, B. and Ismail, O and Gorez, R., Routh-Pade Approximation for Interval systems, IEEE Trans. Automat. Contr., 39(12),1994
  • Bandyopadhyay, B. and Upadhye, A. and Ismail O., γ-δ Routh approximation for interval systems, IEEE Trans. Automat. Contr., 42(12), 1997.
  • Bistritz, Y. and Shaked, U., Stable linear systems simplification via Pade approximations to Hurwitz polynomials, Trans. ASME J. Dyn. Syst. Meas.Control., 103, 279-284, 1981.
  • Blakelock , J.H., Automatic control of aircraft and missiles, John wiley Inc. New york , 226- 235, 1965.
  • Chen, T.C.and Chang, C.Y.and Han, K.W., Stable reduced-order Pade approximants using stability equation method, Electron. Lett., 16, 345-346,1980.
  • Choo, Y. Improvement to modified Routh approximation method., Electron. Lett. , 35, 606- 607. 1999.
  • Choo, Y., Improvement to modified Routh approximation method (correction), Electron. Lett., 1119, 1999.
  • Choo, Y., Direct method for obtaining modified Routh approximants., Electron. Lett., 35, 627–1628 1999.
  • Choo, Y., Improved bilinear Routh approximation method for discrete time systems, Trans. ASME J. Dyn. Syst. Meas. Control., 123, 125–127, 2001.
  • Choo, Y., Equivalence of bilinear Routh and Schwarz approximation methods for discrete- time systems, Electron. Lett., 38, 761–762, 2002.
  • Choo, Y. and Dongmin, K., SISO Continuous System Reduction via impulse response Gramian by iterative formulae, Trans. ASME J. Dyn. Syst. Meas. Contr., 128, 391-393, 2006.
  • Dolgin, Y. and Zeheb, E., On Routh-Pade model reduction of interval systems, IEEE Trans. Autom. Control, 48, 1610–1612,2003.
  • Deb., K., Multi-objective Optimization using Evolutionary Algorithm., New York, John Wiley and Sons Ltd., 2002.
  • Douglas, J.M., Process dynamics and control vol.2 Control system synthesis,prentice Hall New Jersey 1972 chapter 7.
  • Sastry, G.V.K.R. and Rao, G.R. and Rao, P.M. Large scale interval system modelling using Routh approximants, Electron. Lett., 36, 768–769, 2000. [19]
  • Hutton, M.F. and Friedland, B., Routh approximations for reducing order of linear time
  • invariant systems, IEEE Trans. Automat. Contr., AC-20, 329- 337, 1975.
  • Hsieh, C.S and Hwang, C., Model reduction of continuous-time system using a modified Routh-approximation method, IEE Proc. D. Control Theory Appl., 136, 151–156 1989.
  • Householder, A.S., The numerical treatment of single non-linear equation, McGraw-Hill Book Co., New -Newyork 1970.
  • Hwang, C. and Hwang, J.H. and Guo, T.Y., Multifrequency Routh Approximants for linear systems, IEE Proc. Control Theory Applicat. , 142, 351-358, 1975.
  • Hwang, C.Y. and Lee, Y.C., A new family of Routh approximants. Circuits Syst. Signal Process. , 16, 1-25, 1997. [24]
  • Hwang, C. and Yang, S.F., Comments on the computation of interval Routh
  • approximants., IEEE Trans. Autom. Control., 44, 1782–1787, 1999.
  • Kelley, K.J., Aircraft manoeuvre optimization by reduced order approximation control and dynamic system (Ed:C.T. Leondes) , Academic Press London, 132-174, 1973.
  • Krishnamurthy, V. and Sheshadri, V., Model reduction using Routh Stability criterion, IEEE Trans. Autom. Control. 1978; 23: 729-731.
  • Krishnamurthy V. and V.Sheshadri V A simple and direct method of reduction order of linear systems using routh approximation in frequency domain IEEE Trans. Autom. Control. 21, 797-799, 1976.
  • Luss, R.and Jaakola, T., Direct search and systematic reduction of size of search region. AICHE J., 19, 760-766, 1973.
  • Lucas, T.N., The bilinear method: a new stability-preserving order reduction approach. Proc. Inst. Mech. Engg. I. J. Syst. Contr. Engg., 216, 429-436, 2002.
  • Lucas, T.N., Constrained optimal Pade model reduction., ASME J .Dyna. Syst. Meas. Control, 119, 685-690, 1997.
  • Lee, Y.C. and Hwang, C.and Hwang J.H., Model-reduction of SISO systems by Routh expansion and balancing method., J. Franklin Inst., 331B, 367–380, 1994.
  • Lucas, T.N., 1988. Scaled impulse energy approximation for model reduction, IEEE Trans.Automat. Contr., 133, 791-793, 1998.
  • Manigandan T., Devarajan N. and Svanandam S.N. Design of PID controller using reduced order model, Academic Open Internet Journal, 15, 1-15, 2005.
  • Pal, J., State reduced-order Padé approximants using Routh-Hurwitz array, Electron. Lett. , 15, 25-26, 1979.
  • Parks, P.C, A new proof of the Routh-Hurwitz criterion using the second method of Lyapunov, Proc. Camb. Philos. Soc., 694-702, 1962.
  • Pal, J., Improved Pade approximants using stability equation method, Electron. Lett., 19, 426-427, 1983.
  • Puri, V. and Lam, D.P. , Stable model reduction by impulse response error minimization using Michailov criterion and Pade´ approximation, Trans. ASME J. Dyn. Syst. Meas.Control, 110, 389–394, 1988. [38]
  • Rao, A.S.and Lamba, S.S. and Rao, S.V., Routh-approximant time domain reduced
  • order modeling for single-input single-output systems, IEE Proc. Control Theory Appl., 125,1059- 1063, 1978.
  • Singh, V., Obtaining Routh-Pade approximants using Luss-Jaakola algorithm, IEE Proc. Part I, 152.. 129-132, 2005.
  • Singh, V. and Dinesh Chandra, and Kar, H., Improved Routh-Pade approximants: A computer –aided approach., IEEE Trans. Automat. Contr., 49, 292-295, 2004 .
  • Singh V. Stable approximants for stable systems: A new approach, Proc. IEEE., 69, 1155- 1156, 1981.
  • Singh, V., Improved stable Approximants using the Routh array, IEEE Trans. Automat. Contr., AC-26, 581-582, 1981.
  • Singh V. Remarks on system simplification using the Routh stability array. Proc. IEEE.1981; 69: 662, 1981.
  • Singh, V., Nonuniqueness of model reduction using the Routh approach, IEEE Trans. Autom. Control, 24, 650-651, 1979.
  • Shamash, Y., Truncation method of reduction: a viable alternative, Electron. Lett. , 17, 97- 98, 1981.
  • Shamash, Y., Model reduction usng the Routh stability criterion and the Pade
  • approximation technique, Int. J. Control ,21, 475-484, 1975.
  • Shamash, Y., Stable biased reduced-order models using the Routh method of Reduction, Int. J. Syst. Sci., 11, 641-654, 1980.
  • Wan, B.W., Linear model reduction using Michailov criterion and Pade approximation techniques, Int. J.Control, 3, 1073-1089, 1981.
Year 2009, Volume: 1 Issue: 2, 1 - 14, 01.06.2009

Abstract

References

  • Appiah, R.K, Pade methods of Hurwitz polynomial approximation with application to linear system reduction, Int. J.Control. 29: 39-48, 1979.
  • Ashoor, N. and Singh, V., A note on low order modeling, IEEE Trans. Automat. Contr. 27, 1124-1126, 1982.
  • Ashoor, N. and Singh, V., Remarks on system simplification under consideration of time response, Electron. Lett., 18, 496-497, 1982.
  • Bandyopadhyay, B. and Ismail, O and Gorez, R., Routh-Pade Approximation for Interval systems, IEEE Trans. Automat. Contr., 39(12),1994
  • Bandyopadhyay, B. and Upadhye, A. and Ismail O., γ-δ Routh approximation for interval systems, IEEE Trans. Automat. Contr., 42(12), 1997.
  • Bistritz, Y. and Shaked, U., Stable linear systems simplification via Pade approximations to Hurwitz polynomials, Trans. ASME J. Dyn. Syst. Meas.Control., 103, 279-284, 1981.
  • Blakelock , J.H., Automatic control of aircraft and missiles, John wiley Inc. New york , 226- 235, 1965.
  • Chen, T.C.and Chang, C.Y.and Han, K.W., Stable reduced-order Pade approximants using stability equation method, Electron. Lett., 16, 345-346,1980.
  • Choo, Y. Improvement to modified Routh approximation method., Electron. Lett. , 35, 606- 607. 1999.
  • Choo, Y., Improvement to modified Routh approximation method (correction), Electron. Lett., 1119, 1999.
  • Choo, Y., Direct method for obtaining modified Routh approximants., Electron. Lett., 35, 627–1628 1999.
  • Choo, Y., Improved bilinear Routh approximation method for discrete time systems, Trans. ASME J. Dyn. Syst. Meas. Control., 123, 125–127, 2001.
  • Choo, Y., Equivalence of bilinear Routh and Schwarz approximation methods for discrete- time systems, Electron. Lett., 38, 761–762, 2002.
  • Choo, Y. and Dongmin, K., SISO Continuous System Reduction via impulse response Gramian by iterative formulae, Trans. ASME J. Dyn. Syst. Meas. Contr., 128, 391-393, 2006.
  • Dolgin, Y. and Zeheb, E., On Routh-Pade model reduction of interval systems, IEEE Trans. Autom. Control, 48, 1610–1612,2003.
  • Deb., K., Multi-objective Optimization using Evolutionary Algorithm., New York, John Wiley and Sons Ltd., 2002.
  • Douglas, J.M., Process dynamics and control vol.2 Control system synthesis,prentice Hall New Jersey 1972 chapter 7.
  • Sastry, G.V.K.R. and Rao, G.R. and Rao, P.M. Large scale interval system modelling using Routh approximants, Electron. Lett., 36, 768–769, 2000. [19]
  • Hutton, M.F. and Friedland, B., Routh approximations for reducing order of linear time
  • invariant systems, IEEE Trans. Automat. Contr., AC-20, 329- 337, 1975.
  • Hsieh, C.S and Hwang, C., Model reduction of continuous-time system using a modified Routh-approximation method, IEE Proc. D. Control Theory Appl., 136, 151–156 1989.
  • Householder, A.S., The numerical treatment of single non-linear equation, McGraw-Hill Book Co., New -Newyork 1970.
  • Hwang, C. and Hwang, J.H. and Guo, T.Y., Multifrequency Routh Approximants for linear systems, IEE Proc. Control Theory Applicat. , 142, 351-358, 1975.
  • Hwang, C.Y. and Lee, Y.C., A new family of Routh approximants. Circuits Syst. Signal Process. , 16, 1-25, 1997. [24]
  • Hwang, C. and Yang, S.F., Comments on the computation of interval Routh
  • approximants., IEEE Trans. Autom. Control., 44, 1782–1787, 1999.
  • Kelley, K.J., Aircraft manoeuvre optimization by reduced order approximation control and dynamic system (Ed:C.T. Leondes) , Academic Press London, 132-174, 1973.
  • Krishnamurthy, V. and Sheshadri, V., Model reduction using Routh Stability criterion, IEEE Trans. Autom. Control. 1978; 23: 729-731.
  • Krishnamurthy V. and V.Sheshadri V A simple and direct method of reduction order of linear systems using routh approximation in frequency domain IEEE Trans. Autom. Control. 21, 797-799, 1976.
  • Luss, R.and Jaakola, T., Direct search and systematic reduction of size of search region. AICHE J., 19, 760-766, 1973.
  • Lucas, T.N., The bilinear method: a new stability-preserving order reduction approach. Proc. Inst. Mech. Engg. I. J. Syst. Contr. Engg., 216, 429-436, 2002.
  • Lucas, T.N., Constrained optimal Pade model reduction., ASME J .Dyna. Syst. Meas. Control, 119, 685-690, 1997.
  • Lee, Y.C. and Hwang, C.and Hwang J.H., Model-reduction of SISO systems by Routh expansion and balancing method., J. Franklin Inst., 331B, 367–380, 1994.
  • Lucas, T.N., 1988. Scaled impulse energy approximation for model reduction, IEEE Trans.Automat. Contr., 133, 791-793, 1998.
  • Manigandan T., Devarajan N. and Svanandam S.N. Design of PID controller using reduced order model, Academic Open Internet Journal, 15, 1-15, 2005.
  • Pal, J., State reduced-order Padé approximants using Routh-Hurwitz array, Electron. Lett. , 15, 25-26, 1979.
  • Parks, P.C, A new proof of the Routh-Hurwitz criterion using the second method of Lyapunov, Proc. Camb. Philos. Soc., 694-702, 1962.
  • Pal, J., Improved Pade approximants using stability equation method, Electron. Lett., 19, 426-427, 1983.
  • Puri, V. and Lam, D.P. , Stable model reduction by impulse response error minimization using Michailov criterion and Pade´ approximation, Trans. ASME J. Dyn. Syst. Meas.Control, 110, 389–394, 1988. [38]
  • Rao, A.S.and Lamba, S.S. and Rao, S.V., Routh-approximant time domain reduced
  • order modeling for single-input single-output systems, IEE Proc. Control Theory Appl., 125,1059- 1063, 1978.
  • Singh, V., Obtaining Routh-Pade approximants using Luss-Jaakola algorithm, IEE Proc. Part I, 152.. 129-132, 2005.
  • Singh, V. and Dinesh Chandra, and Kar, H., Improved Routh-Pade approximants: A computer –aided approach., IEEE Trans. Automat. Contr., 49, 292-295, 2004 .
  • Singh V. Stable approximants for stable systems: A new approach, Proc. IEEE., 69, 1155- 1156, 1981.
  • Singh, V., Improved stable Approximants using the Routh array, IEEE Trans. Automat. Contr., AC-26, 581-582, 1981.
  • Singh V. Remarks on system simplification using the Routh stability array. Proc. IEEE.1981; 69: 662, 1981.
  • Singh, V., Nonuniqueness of model reduction using the Routh approach, IEEE Trans. Autom. Control, 24, 650-651, 1979.
  • Shamash, Y., Truncation method of reduction: a viable alternative, Electron. Lett. , 17, 97- 98, 1981.
  • Shamash, Y., Model reduction usng the Routh stability criterion and the Pade
  • approximation technique, Int. J. Control ,21, 475-484, 1975.
  • Shamash, Y., Stable biased reduced-order models using the Routh method of Reduction, Int. J. Syst. Sci., 11, 641-654, 1980.
  • Wan, B.W., Linear model reduction using Michailov criterion and Pade approximation techniques, Int. J.Control, 3, 1073-1089, 1981.
There are 52 citations in total.

Details

Other ID JA65FV79ZE
Journal Section Articles
Authors

S. K. Mittal This is me

D. Chandra This is me

B. Dwivedi This is me

Publication Date June 1, 2009
Published in Issue Year 2009 Volume: 1 Issue: 2

Cite

APA Mittal, S. K., Chandra, D., & Dwivedi, B. (2009). Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems. International Journal of Engineering and Applied Sciences, 1(2), 1-14.
AMA Mittal SK, Chandra D, Dwivedi B. Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems. IJEAS. June 2009;1(2):1-14.
Chicago Mittal, S. K., D. Chandra, and B. Dwivedi. “Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems”. International Journal of Engineering and Applied Sciences 1, no. 2 (June 2009): 1-14.
EndNote Mittal SK, Chandra D, Dwivedi B (June 1, 2009) Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems. International Journal of Engineering and Applied Sciences 1 2 1–14.
IEEE S. K. Mittal, D. Chandra, and B. Dwivedi, “Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems”, IJEAS, vol. 1, no. 2, pp. 1–14, 2009.
ISNAD Mittal, S. K. et al. “Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems”. International Journal of Engineering and Applied Sciences 1/2 (June 2009), 1-14.
JAMA Mittal SK, Chandra D, Dwivedi B. Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems. IJEAS. 2009;1:1–14.
MLA Mittal, S. K. et al. “Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems”. International Journal of Engineering and Applied Sciences, vol. 1, no. 2, 2009, pp. 1-14.
Vancouver Mittal SK, Chandra D, Dwivedi B. Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems. IJEAS. 2009;1(2):1-14.

21357