Detection of Bearing Faults by Using Stator Current in Inverter-Fed Induction Motor
Yıl 2019,
Cilt: 1 Sayı: 2, 122 - 134, 15.12.2019
İbrahim Akkurt
,
Hayri Arabacı
Öz
In this study, inverter-fed induction motor of bearing fault detection
is realized by stator current analysis and artificial neural network. Artificial
failures are created by damaging various parts of the bearings used in the experiment.
Current signals receieved from the motor of the faulty bearing are examined in
time and frequency dimension The differences are investigated by comparing the
obtained data with the current signal of the robust bearing. The dominant
characteristics of each bearing are determined as statistical and spectral so
that feature exraction are performed. Failure detection and classification are
realized by articial neural network trained with these determined features. Failure
detection are completed by classifying 95.3% accuracy rate.
Kaynakça
- Aliustaoğlu, C., (2008). Rulman arızalarının gerçek zamanda analizi ve arıza kaynaklarının tespit edilmesi, Yüksek Lisans Tezi. Fen Bilimleri Enstitüsü Kocaeli Üniversitesi, Kocaeli.
- Ateş, M.C. (2016). Motor akım imza analizi, Voltimum Elektrik https://www.voltimum.com.tr/haberler/akim-imza-analizi-nedir. (Erişim Tarihi: 10 Temmuz 2019).
- Bellini, A., Filippetti, F., Tassoni, C., ve Capolino, G.A., (2008). Advances in Diagnostic Techniques for Induction Machine, IEEE Transactions on Industrial Electronıcs, 55(12), 4109-4126.
- Ghate, V.N. ve Dudul, S.V., (2010). Optimal MLP neural network classifier for fault detection of three phase induction motor, Expert Systems with Applications, 37(4), 3468-3481.
- Kanemaru, M., Tsukima, M., Miyauchi, T., ve Hayashi, K., (2018). Bearing Fault Detection in Induction Machine Based on Stator Current Spectrum Monitoring. IEEJ Journal of Industry Application, 7(3), 282-288.
- Kompella, K., Rao, M.V., ve Rao, R.S. (2018). Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques. Ain Shams Enginnering Journal, 9(4), 2427-2439.
- Leite, Valéria C.M.N., Silva, J.G. Borges da, Veloso, G.F.C., ve Eduardo, L., (2015). Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current. IEEE Trans. Ind. Electron., 62(3), 1855-1865.
- Orhan, S., (2003). Dönen makinelerde oluşan arızalar ve titreşim ilişkisi, Teknoloji, 6(3-4), 41-48.
- Öztemel, E., (2003). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
- Pandarakone, S.E., Mizuno, Y., ve Nakamura, H., (2016). Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine. IEEE Transactions on Industry Applications, 53(3), 3049-3056.
- Sağıroğlu, S., (2003). Mühendislikte Yapay Zeka Uygulamaları, Ufuk Kitabevi, 32, Kayseri.
- Samanta, B. ve Al-balushi, K.R., (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 17(2), 317–328.
- Zarei, J., ve Poshtan, J., (2007). Bearing fault detection using wavelet packet transform of induction motor stator current, Tribology International, 763–769.
- Zhou, W., Habetler, T. G., ve Harley, R.G., (2007). Bearing condition monitoring methods for electric machines, A General Review, IEEE international symposium on diagnostics for electric machines, power electronics and drives (pp. 3-6), Cracow, Poland, Sep. 6-8.
Sürücüden Beslenen Asenkron Motorlarda Rulman Arızalarının Stator Akımı Kullanarak Tespiti
Yıl 2019,
Cilt: 1 Sayı: 2, 122 - 134, 15.12.2019
İbrahim Akkurt
,
Hayri Arabacı
Öz
Bu çalışmada sürücüden beslenen asenkron motorlardaki rulman
arızalarının tespiti akım işaret analizi ve yapay sinir ağı kullanılarak gerçekleştirilmiştir.
Deneyde kullanılan rulmanların çeşitli bölgelerine hasarlar verilerek yapay
arızalar oluşturulmuştur. Hatalı rulmana ait motordan alınan akım sinyalleri, zaman
ve frekans boyutunda incelenmiştir. Elde edilen veriler sağlam rulmana ait akım
sinyali ile karşılaştırılarak farklılıklar araştırılmıştır. Her rulmana ait baskın
özellikler istatiksel ve spektral olarak belirlenerek özellik çıkarımı
yapılmıştır. Belirlenen bu özellikler sayesinde yapay sinir ağı eğitilerek hata
tespiti ve sınıflandırması gerçekleştirilmiştir. Rulman arızaları
sınıflandırmasında %95.3 doğruluk oranına ulaşılmıştır.
Kaynakça
- Aliustaoğlu, C., (2008). Rulman arızalarının gerçek zamanda analizi ve arıza kaynaklarının tespit edilmesi, Yüksek Lisans Tezi. Fen Bilimleri Enstitüsü Kocaeli Üniversitesi, Kocaeli.
- Ateş, M.C. (2016). Motor akım imza analizi, Voltimum Elektrik https://www.voltimum.com.tr/haberler/akim-imza-analizi-nedir. (Erişim Tarihi: 10 Temmuz 2019).
- Bellini, A., Filippetti, F., Tassoni, C., ve Capolino, G.A., (2008). Advances in Diagnostic Techniques for Induction Machine, IEEE Transactions on Industrial Electronıcs, 55(12), 4109-4126.
- Ghate, V.N. ve Dudul, S.V., (2010). Optimal MLP neural network classifier for fault detection of three phase induction motor, Expert Systems with Applications, 37(4), 3468-3481.
- Kanemaru, M., Tsukima, M., Miyauchi, T., ve Hayashi, K., (2018). Bearing Fault Detection in Induction Machine Based on Stator Current Spectrum Monitoring. IEEJ Journal of Industry Application, 7(3), 282-288.
- Kompella, K., Rao, M.V., ve Rao, R.S. (2018). Bearing fault detection in a 3 phase induction motor using stator current frequency spectral subtraction with various wavelet decomposition techniques. Ain Shams Enginnering Journal, 9(4), 2427-2439.
- Leite, Valéria C.M.N., Silva, J.G. Borges da, Veloso, G.F.C., ve Eduardo, L., (2015). Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current. IEEE Trans. Ind. Electron., 62(3), 1855-1865.
- Orhan, S., (2003). Dönen makinelerde oluşan arızalar ve titreşim ilişkisi, Teknoloji, 6(3-4), 41-48.
- Öztemel, E., (2003). Yapay Sinir Ağları, Papatya Yayıncılık, İstanbul.
- Pandarakone, S.E., Mizuno, Y., ve Nakamura, H., (2016). Distinct Fault Analysis of Induction Motor Bearing Using Frequency Spectrum Determination and Support Vector Machine. IEEE Transactions on Industry Applications, 53(3), 3049-3056.
- Sağıroğlu, S., (2003). Mühendislikte Yapay Zeka Uygulamaları, Ufuk Kitabevi, 32, Kayseri.
- Samanta, B. ve Al-balushi, K.R., (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 17(2), 317–328.
- Zarei, J., ve Poshtan, J., (2007). Bearing fault detection using wavelet packet transform of induction motor stator current, Tribology International, 763–769.
- Zhou, W., Habetler, T. G., ve Harley, R.G., (2007). Bearing condition monitoring methods for electric machines, A General Review, IEEE international symposium on diagnostics for electric machines, power electronics and drives (pp. 3-6), Cracow, Poland, Sep. 6-8.