Derleme
BibTex RIS Kaynak Göster

Use of Anti Rolling Gyro (ARG) Optimization Systems For Planing Boats

Yıl 2020, Cilt: 2 Sayı: 2, 247 - 261, 15.12.2020
https://doi.org/10.47898/ijeased.794333

Öz

In addition to the basic classification rules that must be taken into account during the design, products and purchase of a marine vessel; it is seen that the measures to increase comfort and safety have gained more importance in recent years. The engineering design of a boat has been conveyed to the customers as an advantage by the mass production companies, as a gain, as well as the efficient use of the volumes and the safety and comfort. Apart from the universal design, the qualities sought in many designs; It is inevitable that all technological progress will increase in parallel with the winning and marketing stages. In this context, it can be said that the main purpose of the design is to use the existing volumes effectively with the least physical effort. Especially since the early 1990s, when the understanding that yachts and recreational boats are the object of the upper class consumers, that is, the rich class, began to collapse, the production of planing boats gained speed. From 2000 to today, the competition of mass production companies, not only in the field of design, but also in the damping of excessive yaw and trim movements of marine vehicles; the comfort of the passenger and crew and the safety of the boat contributed to the development of these motion stabilization systems. In this study, gyro stabilizers (ARG) in order to balance the movements caused by the forces that a ship is exposed to in the water; working principle and basically application examples in slide boats are examined.

Kaynakça

  • Demir, U., Yalçın, Ü., (2017). Basic Optimization Methods in High Speed Boats and Application Areas, Gidb Journal, 10, 35-52.
  • Giallanza, A., Elms, T., (2019). Interactive roll stabilization comparative analysis for large yacht: gyroscope versus active fins. International Journal on Interactive Design and Manufacturing, 14, 143–151. https://doi.org/10.1007/s12008-019-00618-y
  • Kim, S. K., Tilbury, D. M., (1998). Mathematical Modeling and Experimental Identification of a model helicopter. American Institute of Aeronautics and Astronautics, 21(3), 203-213.
  • Lee, S. H., (2014). Gyro-stabilizer Technology Analysis, The Korean Society for Noise and Vibration Engin eering, (pp. 365-366), South Korea.
  • Sperry, E.A., (1923). The Gyro Ship Stabilizer. Read at the Meeting of the Society of Naval Architects of Japan: USA.
  • URL-1, (2020). https://en.wikipedia.org/wiki/Gyroscope, (Erişim Tarihi: 11 Ekim 2020).
  • URL-2, (2014). http://veemgyro.com/wp-content/uploads/2015/11/White_Paper_1403-How_Gyros_ Create_ Stabilizing-Torque.pdf, (Erişim Tarihi: 11 Aralık 2019).
  • URL-3, (2019). http://shipmotion group.com/products.product+Gyro-stabilizer.page+1, (Erişim Tarihi: 11 Ocak2019).
  • URL-4, (2020). https://www.passagemaker.com/trawler-news/gyroscopic-stablization-becomes-more-popula r-as-price-drops-video, (Erişim Tarihi: 14 Ocak 2020).
  • URL-5, (2019). https://www.seakeeper.com/wp-content/uploads/2016/09/105E280B2_ Nordlund_Motor_ ya cht_Mixer_equipped_with_Seakeeper_Gyro_E28094_CharterWorld.com_2810-28-1129.pdf, (Erişim Tarihi: 24 Aralık 2019).
  • URL-6, (2019). https://veem.com.au/veem-gyro-demo-vessel-med-october/, (Erişim Tarihi: 29 Aralık 2019)
  • URL-7, (2019). http://usdynamicscorp.com/literature/general/AN-005%20USD%20Spinning%20Mass%20G yroscopes.pdf, (Erişim Tarihi: 17 Aralık 2019).
  • Takeuchi, H., Umemura, K., Maeda, S., (2011). Development of the Anti Rolling Gyro 375T (Rolling Stabilizer for Yachts) Using Space Control Technology. Mitsubishi Heavy Industries Technical Review, 48(4) 70-75.
  • Talha, M., Asghar, F., ve Kim, S. H., (2017). Design of Fuzzy Tuned PID Controller for Anti Rolling Gyro (ARG) Stabilizer in Ships. International Journal of Fuzzy Logic and Intelligent Systems, 17(3), 210-220. http://dx.doi.org/10.5391/IJFIS.2017.17.3.210
  • Townsend, N. C., and Shenoi, R. A., (2014). Control Strategies for Marine Gyrostabilizers. IEEE Journal of Oceanic Engineering, 39(2), 243-255.
  • Townsend, N.C., Murphy, A.J., Shenoi, R.A., (2007). A new active gyrostabiliser system for ride control of marine vehicles, Ocean Engineering, 34(1),1607–1617.
  • Varela, J. M., Soares, C.G., (2011). Interactive Simulation of Ship Motions in Random Seas based on Real Wave Spectra. International Conference on Computer Graphics Theory and Applications (pp. 235-244). Portugal.
  • Veljović, L., (2010). History and Present of Gyroscope Models and Vector Rotators. Scientific Technical Review, 60(1), 101-111. University of Kragujevac, SERBIA.
  • Zhang, T., (2014). Analysis of Active Gyro Based Roll-Stabilization of Slender Boat Hulls. Master of Science Thesis, KTH Royal Institute of Technology is a University, Stockholm, Sweden.

Kayıcı Tekneler İçin Yalpa Sönümleyici Cayro Sistemlerinin Kullanımı

Yıl 2020, Cilt: 2 Sayı: 2, 247 - 261, 15.12.2020
https://doi.org/10.47898/ijeased.794333

Öz

Bir deniz aracının tasarımı, imalatı ve teslimi aşamalarında göz önünde bulundurulması gereken temel klaslama kurallarına ek olarak; konforu ve güvenliği attırıcı önlemlerin son yıllarda daha fazla önem kazandığı görülmektedir. Bir teknenin mühendislik tasarımın da hem hacimlerin etkin kullanımı, hem de güvenlik ve konforu bir kazanım olarak, seri üretim yapan firmalar tarafından müşterilere avantaj olarak sunulmaktadır. Evrensel tasarım olarak sunulan ve sürdürülebilirlik açısından da birçok tasarımda aranan niteliklerin; tekne üretiminde ve pazarlama aşamalarında tüm teknolojik gelişmelere paralel olarak artması’da kaçınılmazdır. Bu bağlam da tasarımın temel amacı mümkün olan en az fiziksel çaba ile mevcut hacimlerin etkin bir şekilde kullanılabilmektir, denilebilir. Özellikle 1990’lı yılların başlarından itibaren yat ve gezinti teknelerinin bir üst sınıf tüketicilerin, yani zengin sınıfının objesi olduğu anlayış yıkılmaya başlandığında kayıcı tip teknelerin üretimi hız kazanmıştır. 2000’lerden günümüze gelindiğinde ise özellikle seri üretim yapan firmaların rekabeti, sadece tasarım alanında değil aynı zaman da deniz araçlarını aşırı yalpa ve trim hareketlerinin sönümlendirilmesi; yolcu ve mürettebatın konforu, tekne emniyetinin sağlaması amacıyla bu hareket dengeleyici sistemlerin geliştirilmesine katkı sağlamıştır. Bu çalışmada, bir geminin suda maruz kaldığı kuvvetlerin sebep olduğu hareketleri dengeleyebilmek amacıyla cayro stabilizörlerin (ARG); çalışma prensibi ve temel olarak kayıcı teknelerdeki uygulama örnekleri irdelenmiştir.

Kaynakça

  • Demir, U., Yalçın, Ü., (2017). Basic Optimization Methods in High Speed Boats and Application Areas, Gidb Journal, 10, 35-52.
  • Giallanza, A., Elms, T., (2019). Interactive roll stabilization comparative analysis for large yacht: gyroscope versus active fins. International Journal on Interactive Design and Manufacturing, 14, 143–151. https://doi.org/10.1007/s12008-019-00618-y
  • Kim, S. K., Tilbury, D. M., (1998). Mathematical Modeling and Experimental Identification of a model helicopter. American Institute of Aeronautics and Astronautics, 21(3), 203-213.
  • Lee, S. H., (2014). Gyro-stabilizer Technology Analysis, The Korean Society for Noise and Vibration Engin eering, (pp. 365-366), South Korea.
  • Sperry, E.A., (1923). The Gyro Ship Stabilizer. Read at the Meeting of the Society of Naval Architects of Japan: USA.
  • URL-1, (2020). https://en.wikipedia.org/wiki/Gyroscope, (Erişim Tarihi: 11 Ekim 2020).
  • URL-2, (2014). http://veemgyro.com/wp-content/uploads/2015/11/White_Paper_1403-How_Gyros_ Create_ Stabilizing-Torque.pdf, (Erişim Tarihi: 11 Aralık 2019).
  • URL-3, (2019). http://shipmotion group.com/products.product+Gyro-stabilizer.page+1, (Erişim Tarihi: 11 Ocak2019).
  • URL-4, (2020). https://www.passagemaker.com/trawler-news/gyroscopic-stablization-becomes-more-popula r-as-price-drops-video, (Erişim Tarihi: 14 Ocak 2020).
  • URL-5, (2019). https://www.seakeeper.com/wp-content/uploads/2016/09/105E280B2_ Nordlund_Motor_ ya cht_Mixer_equipped_with_Seakeeper_Gyro_E28094_CharterWorld.com_2810-28-1129.pdf, (Erişim Tarihi: 24 Aralık 2019).
  • URL-6, (2019). https://veem.com.au/veem-gyro-demo-vessel-med-october/, (Erişim Tarihi: 29 Aralık 2019)
  • URL-7, (2019). http://usdynamicscorp.com/literature/general/AN-005%20USD%20Spinning%20Mass%20G yroscopes.pdf, (Erişim Tarihi: 17 Aralık 2019).
  • Takeuchi, H., Umemura, K., Maeda, S., (2011). Development of the Anti Rolling Gyro 375T (Rolling Stabilizer for Yachts) Using Space Control Technology. Mitsubishi Heavy Industries Technical Review, 48(4) 70-75.
  • Talha, M., Asghar, F., ve Kim, S. H., (2017). Design of Fuzzy Tuned PID Controller for Anti Rolling Gyro (ARG) Stabilizer in Ships. International Journal of Fuzzy Logic and Intelligent Systems, 17(3), 210-220. http://dx.doi.org/10.5391/IJFIS.2017.17.3.210
  • Townsend, N. C., and Shenoi, R. A., (2014). Control Strategies for Marine Gyrostabilizers. IEEE Journal of Oceanic Engineering, 39(2), 243-255.
  • Townsend, N.C., Murphy, A.J., Shenoi, R.A., (2007). A new active gyrostabiliser system for ride control of marine vehicles, Ocean Engineering, 34(1),1607–1617.
  • Varela, J. M., Soares, C.G., (2011). Interactive Simulation of Ship Motions in Random Seas based on Real Wave Spectra. International Conference on Computer Graphics Theory and Applications (pp. 235-244). Portugal.
  • Veljović, L., (2010). History and Present of Gyroscope Models and Vector Rotators. Scientific Technical Review, 60(1), 101-111. University of Kragujevac, SERBIA.
  • Zhang, T., (2014). Analysis of Active Gyro Based Roll-Stabilization of Slender Boat Hulls. Master of Science Thesis, KTH Royal Institute of Technology is a University, Stockholm, Sweden.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Deniz Mühendisliği (Diğer)
Bölüm Makaleler / Articles
Yazarlar

Uğursal Demir 0000-0002-8729-3429

Yayımlanma Tarihi 15 Aralık 2020
Gönderilme Tarihi 13 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 2 Sayı: 2

Kaynak Göster

APA Demir, U. (2020). Use of Anti Rolling Gyro (ARG) Optimization Systems For Planing Boats. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Dergisi, 2(2), 247-261. https://doi.org/10.47898/ijeased.794333

Cited By