GELİŞEN BİYOMİMİKRİ ARAŞTIRMALARINDA KARADA YAŞAYAN CANLILARIN İŞİTSEL FONKSİYONUN ÖNEMİ
Yıl 2025,
Cilt: 7 Sayı: 2, 90 - 105, 23.12.2025
Hatice Mehtap Buluklu
,
Özgül Akın Şenkal
,
Ercan Köse
,
Filiz Bal Kocyigit
,
Cafer Koyuncu
Öz
Kara hayvanları geniş bir frekans aralığını algılar ve işitsel işlevler frekansa bağlı olarak değişmektedir. Bu çalışma kara hayvanlarının işitsel yeteneklerini inceler ve işitsel işlemeye ilişkin içgörüler sağlayan işitme frekansı aralıkları, işitme eşikleri (watt/cm² cinsinden) ve kendiliğinden otoakustik emisyonlara (SOAE'ler) odaklanır. Anatomik farklılıklar işitme yeteneklerini önemli ölçüde etkiler. Örneğin, farelerin nispeten küçük kulakları olmasına rağmen, işitsel işleme için daha yüksek yoğunluk seviyelerine ihtiyaç duyarlar. Farelerin işitsel eşikleri kulak anatomilerine karşılık gelir ve diğer birçok kara hayvanına kıyasla işitme için daha fazla akustik enerji gerektirmektedir. SOAE'lerin farenin işitsel işlevine nasıl katkıda bulunduğunu göstermek için bir model geliştirilmiştir. Biyomimikride, bu bulgular işitsel mekanizmaları taklit ederek yenilikçi teknolojilere ilham verebilir. Örneğin, işitsel yapıların enerji dönüştürme yetenekleri akustik sensör verimliliğini artırabilir. Ayrıntılı bir modelleme çalışması, belirli bir türe odaklanarak ve deneysel verilere dayalı çok sayıda parametreyi dahil ederek bu kavramı daha da geliştirebilir. Gelecekteki araştırmalar, karasal hayvan iletişimine ilişkin anlayışımızı geliştirmek ve biyomimetik uygulamaları kolaylaştırmak için kulak modellemesini entegre etmelidir. Bu tür çalışmalar, işitsel bilim ve teknolojideki ilerlemelere katkıda bulunacak ve doğal işitme mekanizmalarından esinlenen gelişmiş akustik tasarımlara yol açacaktır.
Kaynakça
-
Ashida, G. (2015). Barn owl and sound localization. Acoust Sci Technol., 36(4): 275-285.
-
Atasoy, F., Erdem, E. (2014). Dog senses. Lalahan Livestock Research Institute 54(1): 33-38.
Barber, A. L., Wilkinson, A., Ratcliffe, V. F., Guo, K. &. Mills, D. S. (2020). A Comparison of Hearing and Auditory Functioning Between Dogs and Humans. Comparative Cognition & Behavior Reviews 15.
-
Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., ... & Kawahara, A. Y. (2022). Anti-bat ultrasound production in moths is globally and phylogenetically widespread. Proceedings of the National Academy of Sciences (PNAS) 119(25): e2117485119.
-
Barlas, E. (2016). Distribution of Bat (Chiroptera) Species in Eskisehir Region. Department of Program Anadolu University, Graduate School of Sciences.
-
Borisyuk, A., Friedman, A., Ermentrout, B., Terman, D., & Borisyuk, A. (2005). Physiology and mathematical modeling of the auditory system. Tutorials in Mathematical Biosciences I: Mathematical Neuroscience, 107-168.
-
Brearty, A. Mc, Auckburally, A., Pollock, P. J., Penderis, J. (2013). Evoked otoacoustic emissions: An alternative test of auditory function in horses. Equine Vet. J., 45(1): 60-65.
-
Bright, K. E., Robinette, M. S., & Glattke, T. J. (2007). Spontaneous otoacoustic emissions in populations with normal hearing sensitivity. Otoacoustic emissions clinical applications. 3rd ed. New York: Thieme Publishers 69-86.
-
Brinkløv, S. M., Jakobsen, L., & Miller, L. A. (2022). Echolocation in bats, odontocetes, birds, and insectivores. Exploring Animal Behavior Through Sound, (1): 419-457.
-
Brixen, E. (2020). Audio metering: measurements, standards and practice. Focal Press.
-
Cao, R., Li, J., & Koyabu, D. (2022). A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021. Ecological Informatics 69, 101654.
-
Cheatham, M. A. (2021A). Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects. Hear Res., 400, 108143.
-
Cheatham, M. A. (2021B). Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res., 409, 108314.
-
Chen, Z., Wiens, J. J. (2020). The origins of acoustic communication in vertebrates, Nature communications, 11(1): 369.
-
Ekdale, E. G. (2016). Form and function of the mammalian inner ear. J. Anat., 228, 324-337.
-
Engler, S., Köppl, C., Manley, G. A., de Kleine, E., & Van Dijk, P. (2020). Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hear Res., 385, 107835.
-
Ersanlı, E. T., & Ersanlı, C. C. (2023). Biomimicry: Journey to the Future with the Power of Nature. International Scientific and Vocational Studies Journal, 7(2), 149-160.
-
Escabi, C. D., Frye, M. D., Trevino, M., & Lobarinas, E. (2019). The rat animal model for noise-induced hearing loss. J Acoust Soc Am., 146(5): 3692–3709.
-
Fletcher, N. H. (2004). A simple frequency-scaling rule for animal communication. J Acoust Soc Am., 115(5): 2334-2338.
Fruth, D. M. F. D. (2014). Spontaneous otoacoustic emissions in an active nonlinear time domain model of the cochlea,” (Doctoral dissertation, Technische Universität Dresden).
-
Gotthelf, L. N. (2004). Small Animal Ear Diseases-E-Book: An Illustrated Guide. Elsevier Health Sciences.
-
Heffner, R. S. (2004). Primate hearing from a mammalian perspective. Anat Rec A Discov Mol Cell Evol Biol. 281(1): 1111-1122.
-
Heffner, H.E, Heffner, S. (2007). Hearing ranges of laboratory animal. J Am Assoc Lab Anim Sci., 46(1), 20-22.
-
Heffner, R. S., Heffner H. E., Contos C., Kearns D. (1994). Hearing in prairie dogs: transition between surface and subterranean rodents. Hear Res., 73(2): 185-189.
-
Heffner, R. S., Koay, G., Heffner, H. E. (2014) Hearing in alpacas (Vicugna pacos): audiogram, localization acuity, and use of binaural locus cues. J Acoust Soc Am., 135(2):778-788.
-
Heuser, J. E. & Tenkova, T. I. (2020). Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. J Neurosci, 439: 80-105.
-
Hill, P. S., Lakes-Harlan, R., Mazzoni, V., Narins, P. M., Virant-Doberlet, M., Wessel, A. (Eds.) (2019). Biotremology: studying vibrational behavior. (No. 6). Berlin Heidelberg: Springer.
-
Hole, C., Murray, R., Marlin, D., & Freeman, P. (2023). Equine Behavioural and Physiological Responses to Auditory Stimuli in the Presence and Absence of Noise-Damping Ear Covers. Animals, 13(9): 1574.
-
Hudspeth, A. J., Jülicher, F., Martin, P. (2010). A critique of the critical cochlea: Hopf—a bifurcation—is better than none. J Neurophysiol., 104(3):1219-1229.
-
Jaworski, J. W., & Peake, N. (2020). Aeroacoustics of silent owl flight. Annu. Rev. Fluid Mech., 52: 395-420.
-
Keeley, B. W., Keeley, A. T. (2021). Acoustic wave response to groove arrays in model ears. Plos one 16(11): e0260020.
-
Koay, G., Heffner, R. S., Bitter, K. S., Heffner, H. E. (2003). Hearing in American leaf-nosed bats,”. II: Carollia perspicillata. Hear Res., 178(1-2): 27-34.
-
Koay, C., Zimmermann, E., Tünsmeyer, J., Kästner, S. B., Hubka, P., Kral, A. (2014). Hearing and age-related changes in the gray mouse lemur. J Assoc Res Otolaryngol., 15: 993-1005.
-
Krumm, B., Klump, G., Köppl, C., Langemann, U. (2017). Barn owls have ageless ears, s. Proc. R. Soc. B., 284(1863): 20171584.
-
Kumar, K., John, J., Ravi, R. (2020). Association between Spontaneous Otoacoustic Emission and Psychoacoustic measures. Int Tinnitus J., 24(2): 79-85.
-
Ladich, F. & Winkler, H. (2017). Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol., 220(13): 2306-2317.
-
Liu, Y. W. (2020). Otoacoustic emissions of the 4th kind: Nonlinear reflection. Acoust Sci Technol., 41(1): 204-208.
-
Manley, G. A. (2017). Comparative auditory neuroscience: understanding the evolution and function of ears. J Assoc Res Otolaryngol., 18, 1-24.
-
Manley, G. A. (2022). Otoacoustic emissions in non-mammals. Audiol. Res., 12(3): 260-272.
-
Manley, G. A. (2024). Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. J Assoc Res Otolaryngol., 1-9.
-
McBrearty, A. R., & Penderis, J. (2011) - Evaluation of auditory function in a population of clinically healthy cats using evoked otoacoustic emissions. J Feline Med Surg., 13(12): 919-926.
-
McBrearty, A., Auckburally, A., Pollock, P. J., Penderis, J. (2013). Evoked otoacoustic emissions: An alternative test of auditory function in horses. Equine Vet J., 45(1): 60-65.
-
McFadden, S. L, Simmons, A. M., Erbe, C. & Thomas, J. A. (2022). Behavioral and Physiological Audiometric Methods for Animals. Exploring animal behavior through sound, 1, (pp355- 386).
-
Malkemper, E. P., Mason, M. J., & Burda, H. (2020). Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats. J Anat., 236(6): 980-995.
-
Mohanta, T. K. (2018). Sound wave in plant growth regulation: a review of potential biotechnological applications. The Journal of Animal & Plant Sciences, 28(1).
-
Montauban, C., Mas, M., Tuneu-Corral, C., Wangensteen, O. S., Budinski, I., Martí-Carreras, J., ... & López-Baucells, A. (2021). Bat echolocation plasticity in allopatry: a call for caution in acoustic identification of Pipistrellus sp. Behav Ecol Sociobiol., 75(4): 1-15.
-
Moulin, A., L. Collet, E. Veuillet, & A. Morgen (1993). Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res., 65(1-2): 216-233.
-
Naert, G., Pasdelou, M. P., Le Prell, C. G. (2019). Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. J Acoust Soc Am., 146(5): 3743-3769.
-
Nakano, R., Takanashi, T., Surlykke, A. (2015). Moth hearing and sound communication. J Comp Physiol A., 201: 111-121.
-
Neil, T. R., &. Holderied, M. W. (2021). Sound production and hearing in insects. Adv In Insect Phys., 61, 101-139. Academic Press.
-
Nemati, H., & Dehghan-Niri, E. (2022). Pioneering a biomimetic approach for the acoustic near-field measurement of aye-aye biological auditory system. In Bioinspiration, Biomimetics, and Bioreplication XII 12041, 68-74. SPIE.
-
Nemati, H., Dehghan-Niri, E. (2023). Biomimetic investigation of the impact of the ear canal on the acoustic field sensitivity of aye-ayes. Appl. Acoust., 202,109171.
-
Nemati, H., Dehghan-Niri, E. (2020). The acoustic near-field measurement of aye-ayes’ biological auditory system utilizing a biomimetic robotic tap-scanning. Bioinspir Biomim. 15(5): 056003.
-
Nuttall, A. L., Grosh, K., Zheng, J., De Boer, E., Zou, Y., Ren, T. (2004). Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol., 5: 337-348 (2004).
-
O’Connell-Rodwell, C. E., Berezin, J. L., Dharmarajan, A., Ravicz, M. E., Hu, Y., Guan, X., ... & Puria, S. (2024). The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal. Plos one, 19(4): e0298535.
-
Patel, S., Shah, L., Dang, N., Tan, X., Almudevar, A., & White, P. M. (2020). SIRT3 promotes auditory function in young adult FVB/nJ mice but is dispensable for hearing recovery after noise exposure. Plos one, 15(7), e0235491.
-
Reynolds, R. P., Kinard, W. L., Degraff, J. J., Leverage, N., Norton, J. N. (2010). Noise in a laboratory animal facility from the human and mouse perspectives. J Am Assoc Lab Anim Sci., 49(5): 592-597.
-
Roongthumskul, Y., Maoiléidigh, D. Ó, & Hudspeth, A. J. (2019). Bilateral spontaneous otoacoustic emissions show coupling between active oscillators in the two ears. Biophys J., 116(10): 2023-2034.
-
Rørvang, M. V., Nielsen, B. L., & McLean, A. N. (2020). Sensory abilities of horses and their importance for equitation science. Front Vet Sci., 7, 633.
-
Ruggero, M. A., Kramek, B., Rich, N. C. (1984). Spontaneous otoacoustic emissions in a dog, Hear Res., 13(3): 293-296.
-
Schwartzkopff, J. (1977). Auditory communication in lower animals: Role of auditory physiology. Annu Rev Psychol., 28(1): 61-84.
-
Skals, N., Surlykke, A. (1999). Sound production by abdominal tymbal organs in two moth species: the green silver-line and the scarce silver-line (Noctuoidea: Nolidae: Chloephorinae). J Exp. Biol., 202(21): 2937-2949.
-
Strain, G. M. (2017). Hearing disorders in cats: Classification, pathology and diagnosis. J Feline Med Surg., 19(3): 276- 287.
-
Sundar, P. S., Chowdhury, C., & Kamarthi, S. (2021). Evaluation of human ear anatomy and functionality by axiomatic design. Biomimetics, 6(2): 31.
-
Ten Cate, C., & Spierings, M. (2019). Rules, rhythm and grouping: auditory pattern perception by birds. Anim. Behav., 151, 249-257.
-
Tollin, D. J., & Koka, K. (2009). Postnatal development of sound pressure transformations by the head and pinnae of the cat: monaural characteristics. J Acoust Soc Am. 125(2): 980-994.
-
Ubiema, G., Siwiaszczyk, M., Parias, C., Bresso, R., Hay C., Mulot, B., ... & Chaillou E. (2022). The use and impact of auditory stimulation in animals. J. Interdiscip. Methodol.
-
URL-1, (2023, September 01). http://kbb.uludag.edu.tr/ders-dis-orta-kulak-anatomofizyoloji.html.
-
URL-2, (2023, September 01). https://boundbobskryptis.blogspot.com/2019/04/anatomy-of-cat-ear.html.
-
URL-3, (2023, September 01). https://remotehorseridertraining.wordpress.com/2019/03/17/obsessive-compulsive-habit-in-horses/.
-
URL-4, (2023, September 01). https://slideplayer.com/slide/9495925/.
-
URL-5, (2023, September 02). https://veteriankey.com/examination-of-the-ear/#c27-fig-0002-1.
-
URL-6, (2023, September 02). https://soundstudiesblog.com/2014/08/21/the-better-to-hear-you-with-my-dear-size-and-the-acoustic-world/
-
URL-7, (2023, September 02). https://www.ocregister.com/2010/06/15/anatomy-of-cat-ear-is-complex-wonder/
-
Valente, M., Fernandez, E., Monroe, H., Valente, M., & Cadieux, J. (2011). Audiology answers for otolaryngologists New York, NY: Thieme.
-
Van der Heijden, M., & Versteegh, C. P. (2015). Energy flux in the cochlea: Evidence against power amplification of the traveling wave. J Assoc Res Otolaryngol., 16, 581-597.
-
Vater, M., & Kössl, M. (2011). Comparative aspects of cochlear functional organization in mammals. Hear Res., 273(1-2): 89-99.
-
Wysocki, J., & Sharifi, M. (2005). Measurements of selected parameters of the guinea pig temporal bone. Folia Morphol., 64(3): 145–150.
-
Yin, H. X., Zhang, P., Wang, Z., Liu, Y. F., Liu, Y., Xiao, T. Q., …., Wang, Z. C. (2019). Investigation of inner ear anatomy in mouse using X‐ray phase contrast tomography. Microsc Res Tech., 82(7): 953-960.
The importance of auditory function in terrestrial life forms for advancing biomimicry research
Yıl 2025,
Cilt: 7 Sayı: 2, 90 - 105, 23.12.2025
Hatice Mehtap Buluklu
,
Özgül Akın Şenkal
,
Ercan Köse
,
Filiz Bal Kocyigit
,
Cafer Koyuncu
Öz
Terrestrial animals perceive a wide range of frequencies, with auditory functions varying depending on the frequency. This study examines the auditory capabilities of terrestrial animals, focusing on hearing frequency ranges, hearing thresholds (in watts/cm²), and spontaneous otoacoustic emissions (SOAEs), which provide insights into auditory processing. Anatomical differences significantly influence hearing abilities. For instance, although mice have relatively small ears, they require higher intensity levels for auditory processing. The auditory thresholds of mice correspond to their ear anatomy, necessitating greater acoustic energy for hearing compared to many other terrestrial animals. A model was developed to illustrate how SOAEs contribute to the mouse’s auditory function. In biomimicry, these findings can inspire innovative technologies by replicating auditory mechanisms. For example, the energy conversion capabilities of auditory structures can enhance acoustic sensor efficiency. A detailed modeling study can further refine this concept by focusing on a specific species and incorporating numerous parameters based on empirical data. Future research should integrate ear modeling to improve our understanding of terrestrial animal communication and facilitate biomimetic applications. Such studies will contribute to advancements in auditory science and technology, leading to improved acoustic designs inspired by natural hearing mechanisms.
Kaynakça
-
Ashida, G. (2015). Barn owl and sound localization. Acoust Sci Technol., 36(4): 275-285.
-
Atasoy, F., Erdem, E. (2014). Dog senses. Lalahan Livestock Research Institute 54(1): 33-38.
Barber, A. L., Wilkinson, A., Ratcliffe, V. F., Guo, K. &. Mills, D. S. (2020). A Comparison of Hearing and Auditory Functioning Between Dogs and Humans. Comparative Cognition & Behavior Reviews 15.
-
Barber, J. R., Plotkin, D., Rubin, J. J., Homziak, N. T., Leavell, B. C., Houlihan, P. R., ... & Kawahara, A. Y. (2022). Anti-bat ultrasound production in moths is globally and phylogenetically widespread. Proceedings of the National Academy of Sciences (PNAS) 119(25): e2117485119.
-
Barlas, E. (2016). Distribution of Bat (Chiroptera) Species in Eskisehir Region. Department of Program Anadolu University, Graduate School of Sciences.
-
Borisyuk, A., Friedman, A., Ermentrout, B., Terman, D., & Borisyuk, A. (2005). Physiology and mathematical modeling of the auditory system. Tutorials in Mathematical Biosciences I: Mathematical Neuroscience, 107-168.
-
Brearty, A. Mc, Auckburally, A., Pollock, P. J., Penderis, J. (2013). Evoked otoacoustic emissions: An alternative test of auditory function in horses. Equine Vet. J., 45(1): 60-65.
-
Bright, K. E., Robinette, M. S., & Glattke, T. J. (2007). Spontaneous otoacoustic emissions in populations with normal hearing sensitivity. Otoacoustic emissions clinical applications. 3rd ed. New York: Thieme Publishers 69-86.
-
Brinkløv, S. M., Jakobsen, L., & Miller, L. A. (2022). Echolocation in bats, odontocetes, birds, and insectivores. Exploring Animal Behavior Through Sound, (1): 419-457.
-
Brixen, E. (2020). Audio metering: measurements, standards and practice. Focal Press.
-
Cao, R., Li, J., & Koyabu, D. (2022). A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021. Ecological Informatics 69, 101654.
-
Cheatham, M. A. (2021A). Comparing spontaneous and stimulus frequency otoacoustic emissions in mice with tectorial membrane defects. Hear Res., 400, 108143.
-
Cheatham, M. A. (2021B). Spontaneous otoacoustic emissions are biomarkers for mice with tectorial membrane defects. Hear Res., 409, 108314.
-
Chen, Z., Wiens, J. J. (2020). The origins of acoustic communication in vertebrates, Nature communications, 11(1): 369.
-
Ekdale, E. G. (2016). Form and function of the mammalian inner ear. J. Anat., 228, 324-337.
-
Engler, S., Köppl, C., Manley, G. A., de Kleine, E., & Van Dijk, P. (2020). Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hear Res., 385, 107835.
-
Ersanlı, E. T., & Ersanlı, C. C. (2023). Biomimicry: Journey to the Future with the Power of Nature. International Scientific and Vocational Studies Journal, 7(2), 149-160.
-
Escabi, C. D., Frye, M. D., Trevino, M., & Lobarinas, E. (2019). The rat animal model for noise-induced hearing loss. J Acoust Soc Am., 146(5): 3692–3709.
-
Fletcher, N. H. (2004). A simple frequency-scaling rule for animal communication. J Acoust Soc Am., 115(5): 2334-2338.
Fruth, D. M. F. D. (2014). Spontaneous otoacoustic emissions in an active nonlinear time domain model of the cochlea,” (Doctoral dissertation, Technische Universität Dresden).
-
Gotthelf, L. N. (2004). Small Animal Ear Diseases-E-Book: An Illustrated Guide. Elsevier Health Sciences.
-
Heffner, R. S. (2004). Primate hearing from a mammalian perspective. Anat Rec A Discov Mol Cell Evol Biol. 281(1): 1111-1122.
-
Heffner, H.E, Heffner, S. (2007). Hearing ranges of laboratory animal. J Am Assoc Lab Anim Sci., 46(1), 20-22.
-
Heffner, R. S., Heffner H. E., Contos C., Kearns D. (1994). Hearing in prairie dogs: transition between surface and subterranean rodents. Hear Res., 73(2): 185-189.
-
Heffner, R. S., Koay, G., Heffner, H. E. (2014) Hearing in alpacas (Vicugna pacos): audiogram, localization acuity, and use of binaural locus cues. J Acoust Soc Am., 135(2):778-788.
-
Heuser, J. E. & Tenkova, T. I. (2020). Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. J Neurosci, 439: 80-105.
-
Hill, P. S., Lakes-Harlan, R., Mazzoni, V., Narins, P. M., Virant-Doberlet, M., Wessel, A. (Eds.) (2019). Biotremology: studying vibrational behavior. (No. 6). Berlin Heidelberg: Springer.
-
Hole, C., Murray, R., Marlin, D., & Freeman, P. (2023). Equine Behavioural and Physiological Responses to Auditory Stimuli in the Presence and Absence of Noise-Damping Ear Covers. Animals, 13(9): 1574.
-
Hudspeth, A. J., Jülicher, F., Martin, P. (2010). A critique of the critical cochlea: Hopf—a bifurcation—is better than none. J Neurophysiol., 104(3):1219-1229.
-
Jaworski, J. W., & Peake, N. (2020). Aeroacoustics of silent owl flight. Annu. Rev. Fluid Mech., 52: 395-420.
-
Keeley, B. W., Keeley, A. T. (2021). Acoustic wave response to groove arrays in model ears. Plos one 16(11): e0260020.
-
Koay, G., Heffner, R. S., Bitter, K. S., Heffner, H. E. (2003). Hearing in American leaf-nosed bats,”. II: Carollia perspicillata. Hear Res., 178(1-2): 27-34.
-
Koay, C., Zimmermann, E., Tünsmeyer, J., Kästner, S. B., Hubka, P., Kral, A. (2014). Hearing and age-related changes in the gray mouse lemur. J Assoc Res Otolaryngol., 15: 993-1005.
-
Krumm, B., Klump, G., Köppl, C., Langemann, U. (2017). Barn owls have ageless ears, s. Proc. R. Soc. B., 284(1863): 20171584.
-
Kumar, K., John, J., Ravi, R. (2020). Association between Spontaneous Otoacoustic Emission and Psychoacoustic measures. Int Tinnitus J., 24(2): 79-85.
-
Ladich, F. & Winkler, H. (2017). Acoustic communication in terrestrial and aquatic vertebrates. J Exp Biol., 220(13): 2306-2317.
-
Liu, Y. W. (2020). Otoacoustic emissions of the 4th kind: Nonlinear reflection. Acoust Sci Technol., 41(1): 204-208.
-
Manley, G. A. (2017). Comparative auditory neuroscience: understanding the evolution and function of ears. J Assoc Res Otolaryngol., 18, 1-24.
-
Manley, G. A. (2022). Otoacoustic emissions in non-mammals. Audiol. Res., 12(3): 260-272.
-
Manley, G. A. (2024). Conditions Underlying the Appearance of Spontaneous Otoacoustic Emissions in Mammals. J Assoc Res Otolaryngol., 1-9.
-
McBrearty, A. R., & Penderis, J. (2011) - Evaluation of auditory function in a population of clinically healthy cats using evoked otoacoustic emissions. J Feline Med Surg., 13(12): 919-926.
-
McBrearty, A., Auckburally, A., Pollock, P. J., Penderis, J. (2013). Evoked otoacoustic emissions: An alternative test of auditory function in horses. Equine Vet J., 45(1): 60-65.
-
McFadden, S. L, Simmons, A. M., Erbe, C. & Thomas, J. A. (2022). Behavioral and Physiological Audiometric Methods for Animals. Exploring animal behavior through sound, 1, (pp355- 386).
-
Malkemper, E. P., Mason, M. J., & Burda, H. (2020). Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats. J Anat., 236(6): 980-995.
-
Mohanta, T. K. (2018). Sound wave in plant growth regulation: a review of potential biotechnological applications. The Journal of Animal & Plant Sciences, 28(1).
-
Montauban, C., Mas, M., Tuneu-Corral, C., Wangensteen, O. S., Budinski, I., Martí-Carreras, J., ... & López-Baucells, A. (2021). Bat echolocation plasticity in allopatry: a call for caution in acoustic identification of Pipistrellus sp. Behav Ecol Sociobiol., 75(4): 1-15.
-
Moulin, A., L. Collet, E. Veuillet, & A. Morgen (1993). Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res., 65(1-2): 216-233.
-
Naert, G., Pasdelou, M. P., Le Prell, C. G. (2019). Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. J Acoust Soc Am., 146(5): 3743-3769.
-
Nakano, R., Takanashi, T., Surlykke, A. (2015). Moth hearing and sound communication. J Comp Physiol A., 201: 111-121.
-
Neil, T. R., &. Holderied, M. W. (2021). Sound production and hearing in insects. Adv In Insect Phys., 61, 101-139. Academic Press.
-
Nemati, H., & Dehghan-Niri, E. (2022). Pioneering a biomimetic approach for the acoustic near-field measurement of aye-aye biological auditory system. In Bioinspiration, Biomimetics, and Bioreplication XII 12041, 68-74. SPIE.
-
Nemati, H., Dehghan-Niri, E. (2023). Biomimetic investigation of the impact of the ear canal on the acoustic field sensitivity of aye-ayes. Appl. Acoust., 202,109171.
-
Nemati, H., Dehghan-Niri, E. (2020). The acoustic near-field measurement of aye-ayes’ biological auditory system utilizing a biomimetic robotic tap-scanning. Bioinspir Biomim. 15(5): 056003.
-
Nuttall, A. L., Grosh, K., Zheng, J., De Boer, E., Zou, Y., Ren, T. (2004). Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol., 5: 337-348 (2004).
-
O’Connell-Rodwell, C. E., Berezin, J. L., Dharmarajan, A., Ravicz, M. E., Hu, Y., Guan, X., ... & Puria, S. (2024). The impact of size on middle-ear sound transmission in elephants, the largest terrestrial mammal. Plos one, 19(4): e0298535.
-
Patel, S., Shah, L., Dang, N., Tan, X., Almudevar, A., & White, P. M. (2020). SIRT3 promotes auditory function in young adult FVB/nJ mice but is dispensable for hearing recovery after noise exposure. Plos one, 15(7), e0235491.
-
Reynolds, R. P., Kinard, W. L., Degraff, J. J., Leverage, N., Norton, J. N. (2010). Noise in a laboratory animal facility from the human and mouse perspectives. J Am Assoc Lab Anim Sci., 49(5): 592-597.
-
Roongthumskul, Y., Maoiléidigh, D. Ó, & Hudspeth, A. J. (2019). Bilateral spontaneous otoacoustic emissions show coupling between active oscillators in the two ears. Biophys J., 116(10): 2023-2034.
-
Rørvang, M. V., Nielsen, B. L., & McLean, A. N. (2020). Sensory abilities of horses and their importance for equitation science. Front Vet Sci., 7, 633.
-
Ruggero, M. A., Kramek, B., Rich, N. C. (1984). Spontaneous otoacoustic emissions in a dog, Hear Res., 13(3): 293-296.
-
Schwartzkopff, J. (1977). Auditory communication in lower animals: Role of auditory physiology. Annu Rev Psychol., 28(1): 61-84.
-
Skals, N., Surlykke, A. (1999). Sound production by abdominal tymbal organs in two moth species: the green silver-line and the scarce silver-line (Noctuoidea: Nolidae: Chloephorinae). J Exp. Biol., 202(21): 2937-2949.
-
Strain, G. M. (2017). Hearing disorders in cats: Classification, pathology and diagnosis. J Feline Med Surg., 19(3): 276- 287.
-
Sundar, P. S., Chowdhury, C., & Kamarthi, S. (2021). Evaluation of human ear anatomy and functionality by axiomatic design. Biomimetics, 6(2): 31.
-
Ten Cate, C., & Spierings, M. (2019). Rules, rhythm and grouping: auditory pattern perception by birds. Anim. Behav., 151, 249-257.
-
Tollin, D. J., & Koka, K. (2009). Postnatal development of sound pressure transformations by the head and pinnae of the cat: monaural characteristics. J Acoust Soc Am. 125(2): 980-994.
-
Ubiema, G., Siwiaszczyk, M., Parias, C., Bresso, R., Hay C., Mulot, B., ... & Chaillou E. (2022). The use and impact of auditory stimulation in animals. J. Interdiscip. Methodol.
-
URL-1, (2023, September 01). http://kbb.uludag.edu.tr/ders-dis-orta-kulak-anatomofizyoloji.html.
-
URL-2, (2023, September 01). https://boundbobskryptis.blogspot.com/2019/04/anatomy-of-cat-ear.html.
-
URL-3, (2023, September 01). https://remotehorseridertraining.wordpress.com/2019/03/17/obsessive-compulsive-habit-in-horses/.
-
URL-4, (2023, September 01). https://slideplayer.com/slide/9495925/.
-
URL-5, (2023, September 02). https://veteriankey.com/examination-of-the-ear/#c27-fig-0002-1.
-
URL-6, (2023, September 02). https://soundstudiesblog.com/2014/08/21/the-better-to-hear-you-with-my-dear-size-and-the-acoustic-world/
-
URL-7, (2023, September 02). https://www.ocregister.com/2010/06/15/anatomy-of-cat-ear-is-complex-wonder/
-
Valente, M., Fernandez, E., Monroe, H., Valente, M., & Cadieux, J. (2011). Audiology answers for otolaryngologists New York, NY: Thieme.
-
Van der Heijden, M., & Versteegh, C. P. (2015). Energy flux in the cochlea: Evidence against power amplification of the traveling wave. J Assoc Res Otolaryngol., 16, 581-597.
-
Vater, M., & Kössl, M. (2011). Comparative aspects of cochlear functional organization in mammals. Hear Res., 273(1-2): 89-99.
-
Wysocki, J., & Sharifi, M. (2005). Measurements of selected parameters of the guinea pig temporal bone. Folia Morphol., 64(3): 145–150.
-
Yin, H. X., Zhang, P., Wang, Z., Liu, Y. F., Liu, Y., Xiao, T. Q., …., Wang, Z. C. (2019). Investigation of inner ear anatomy in mouse using X‐ray phase contrast tomography. Microsc Res Tech., 82(7): 953-960.