Araştırma Makalesi
BibTex RIS Kaynak Göster

Süpersonik Akışta Kavite Geometrisinin ve Enjektör Konumunun Alev Stabilizasyonu Üzerindeki Etkisinin Parametrik ve Performansa Dayalı HAD ile İncelenmesi

Yıl 2025, Cilt: 1 Sayı: 1, 1 - 7, 30.06.2025

Öz

Scramjet (Süpersonik Yanmalı Ramjet) motorları, süpersonik koşullar altında kararlı yanma ve verimli yakıt-hava karışımının temel zorluklar olmaya devam ettiği hipersonik uçuş için önemli bir itici güç teknolojisidir. Bu çalışma, karıştırma ve alev stabilizasyonunu geliştirmek için bir scramjet yakıcıdaki boşluk geometrisini ve yakıt enjeksiyon konfigürasyonlarını optimize etmek için iki boyutlu bir hesaplamalı akışkanlar dinamiği (CFD) araştırması sunmaktadır. Dikdörtgen ve trapez boşluk geometrileri, ANSYS Fluent kullanılarak değişen hidrojen enjeksiyon basınçları (1, 2 ve 3 atm) ve konumları (üst, orta ve alt) altında değerlendirilmiştir. Reaktif akış dinamiklerini simüle etmek için SST k-ω türbülans modelini ve Eddy Dissipation Modelini içeren yoğunluk tabanlı bir çözücü kullanılmıştır. Sayısal modelin doğrulanması, ağ bağımsızlığı ve normalleştirilmiş basınç profilleri üzerinde uyum sağlanarak deneysel verilerle karşılaştırılarak gerçekleştirilmiştir. Sonuçlar, enjeksiyon konumu ve boşluk geometrisinin akış devridaimini, yakıtın tutulmasını ve sıcaklık dağılımını önemli ölçüde etkilediğini göstermiştir. Dikdörtgen boşlukta 2 atm'de orta enjeksiyon en düzgün girdap oluşumunu ve en yüksek yanma verimliliğini sağlamıştır. Buna karşılık, üst enjeksiyon konfigürasyonları, boşluğun baypas edilmesi nedeniyle sürekli olarak zayıf alev tutma ile sonuçlanmıştır. Trapez kavite için, 2 atm'deki orta ve alt enjeksiyonlar, daha düşük tepe sıcaklıkları olsa da, benzer karıştırma davranışı sergilemiştir. Genel olarak, 2 atm'de orta hat enjeksiyonlu dikdörtgen kavite, süpersonik akışta sürekli yanma için optimum performans göstermiştir. Bu bulgular, scramjet sistemlerinde verimli alev tutucuların tasarımına katkıda bulunmakta ve gelecekteki hipersonik tahrik uygulamalarında daha iyi performans için içgörüler sunmaktadır.

Kaynakça

  • [1] X. Li, Q. Lei, X. Zhao, W. Fan, S. Chen, L. Chen, Y. Tian and Q. Zhou, "Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length to Depth Ratio," Aerospace, vol. 9, no. 4, p. 214, 2022.
  • [2] S. Huang, Q. Chen, Y. Cheng, J. Xian and Z. Tai, "Supersonic Combustion Modeling and Simulation on General Platforms," Aerospace, vol. 9, no. 7, p. 366, 2022.
  • [3] G. B. Goodwin, R. F. Johnson, D. A. Kessler, A. D. Kercher and H. K. Chelliah, "Effect of Inflow Turbulence on Premixed Combustion in a Cavity Flameholder," arXiv preprint, arXiv:2001.05893, 2020. [Online]. Available: https://arxiv.org/abs/2001.05893.
  • [4] M. Lin, J. Fang, X. Deng, X. Gu and Z. X. Chen, "Direct numerical simulation of inflow boundary-layer turbulence effects on cavity flame stabilisation in a model scramjet combustor," Aerosp. Sci. Technol., vol. 165, p. 110463, 2025.
  • [5] E. B. Jeong, S. O’Byrne, I. S. Jeung and A. F. P. Houwing, "The Effect of Fuel Injection Location on Supersonic Hydrogen Combustion in a Cavity Based Model Scramjet Combustor," Energies, vol. 13, no. 1, p. 193, 2020.
  • [6] Y. Zhang, Y. Chen and Y. Sun, "Numerical and experimental examination of strut plus wall injection in a scramjet combustor," Advances in Mechanical Engineering, Springer, 2025.
  • [7] Y. Sun, F. Li, J. Zhu et al., "Effects of Additional Cavity Floor Injection on Ignition and Combustion in a Mach 2 Supersonic Flow," Energies, vol. 13, no. 18, p. 4801, 2020.
  • [8] Z. Liu et al., "Ignition and flame stabilization in an ethylene-fueled cavity stabilized scramjet engine," Proc. EUCASS Conf., 2022.
  • [9] N. Relangi, A. Ingenito and S. Jeyakumar, "Implications of Injection Locations in an Axisymmetric Cavity-Based Scramjet Combustor," Energies, vol. 14, p. 2626, 2021.
  • [10] F. Li, M. Sun, Z. Cai, Y. Chen, Y. Sun, F. Li and J. Zhu, "Effects of additional cavity floor injection on the ignition and combustion processes in a Mach 2 supersonic flow," Energies, vol. 13, no. 18, p. 4801, 2020.
  • [11] Y. Zhang, Y. Chen and Y. Sun, "Characteristics of Flame Stabilization Enhancement in a Strut Based Supersonic Combustor," Advances in Mechanical Engineering, Springer, 2025.
  • [12] X. Li et al., "Supersonic Combustion Mode Analysis of a Cavity Based Scramjet," Aerospace, MDPI, 2022.
  • [13] Z. Meng, C. Shen, K. Jia and H. He, "Numerical study on flame stabilization by shock-induced in a supersonic combustor with parallel-cavity: Symmetric configuration," Acta Astronaut., vol. 232, pp. 721–733, 2025.
  • [14] B. Lukovic, P. Orkwis, M. Turner and B. Sekar, "Effect of cavity L/D variations on neural network-based deterministic unsteadiness source terms," in Proc. 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002, p. 857, AIAA Paper 2002-0857.
  • [15] G. Choubey, M. Solanki, T. Bhatt, G. Kshitij, D. Yuvarajan and W. Huang, "Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy," Acta Astronautica, vol. 202, pp. 373–385, Jan. 2023.
  • [16] M. R. Gruber, R. A. Baurle, T. Mathur and K. Y. Hsu, "Fundamental studies of cavity-based flameholder concepts for supersonic combustors," Journal of Propulsion and Power, vol. 17, no. 1, pp. 146–153, 2001.
  • [17] M. Yüzücü, "Numerical Investigation of the Effect of Flameholder Geometry on Air-Fuel Mixing in Scramjet Engines," M.S. thesis, 2024.
  • [18] Z. Cai, M. Sun, Z. Wang and X. S. Bai, "Effect of cavity geometry on fuel transport and mixing processes in a scramjet combustor," Aerospace Science and Technology, vol. 80, pp. 309–314, Sep. 2018.
  • [19] T. Roos, A. Pudsey, M. Bricalli and H. Ogawa, "Cavity enhanced jet interactions in a scramjet combustor," Acta Astronautica, vol. 157, pp. 162–179, Apr. 2019.

A Parametric and Performance-Based CFD Investigation Of The Effect Of Cavity Geometry and Location Of Injector On Flame Stabilization In Supersonic Flow

Yıl 2025, Cilt: 1 Sayı: 1, 1 - 7, 30.06.2025

Öz

Scramjet (Supersonic Combustion Ramjet) engines are a key propulsion technology for hypersonic flight, where stable combustion and efficient fuel–air mixing under supersonic conditions remain fundamental challenges. This study presents a two-dimensional computational fluid dynamics (CFD) investigation to optimize cavity geometry and fuel injection configurations in a scramjet combustor to enhance mixing and flame stabilization. Rectangular and trapezoidal cavity geometries were assessed under varying hydrogen injection pressures (1, 2, and 3 atm) and locations (top, middle, and bottom) using ANSYS Fluent. A density-based solver incorporating the SST k-ω turbulence model and the Eddy Dissipation Model was employed to simulate reactive flow dynamics. Validation of the numerical model was performed through comparison with experimental data, ensuring mesh independence and agreement on normalized pressure profiles. Results showed that injection location and cavity geometry significantly influence flow recirculation, fuel retention, and temperature distribution. The middle injection at 2 atm in the rectangular cavity yielded the most uniform vortex formation and highest combustion efficiency. In contrast, top injection configurations consistently resulted in poor flame holding due to bypassing of the cavity. For the trapezoidal cavity, middle and bottom injections at 2 atm exhibited comparable mixing behavior, albeit with lower peak temperatures. Overall, the rectangular cavity with centerline injection at 2 atm demonstrated optimal performance for sustained combustion in supersonic flow. These findings contribute to the design of efficient flameholders in scramjet systems, offering insights for improved performance in future hypersonic propulsion applications.

Kaynakça

  • [1] X. Li, Q. Lei, X. Zhao, W. Fan, S. Chen, L. Chen, Y. Tian and Q. Zhou, "Combustion Characteristics of a Supersonic Combustor with a Large Cavity Length to Depth Ratio," Aerospace, vol. 9, no. 4, p. 214, 2022.
  • [2] S. Huang, Q. Chen, Y. Cheng, J. Xian and Z. Tai, "Supersonic Combustion Modeling and Simulation on General Platforms," Aerospace, vol. 9, no. 7, p. 366, 2022.
  • [3] G. B. Goodwin, R. F. Johnson, D. A. Kessler, A. D. Kercher and H. K. Chelliah, "Effect of Inflow Turbulence on Premixed Combustion in a Cavity Flameholder," arXiv preprint, arXiv:2001.05893, 2020. [Online]. Available: https://arxiv.org/abs/2001.05893.
  • [4] M. Lin, J. Fang, X. Deng, X. Gu and Z. X. Chen, "Direct numerical simulation of inflow boundary-layer turbulence effects on cavity flame stabilisation in a model scramjet combustor," Aerosp. Sci. Technol., vol. 165, p. 110463, 2025.
  • [5] E. B. Jeong, S. O’Byrne, I. S. Jeung and A. F. P. Houwing, "The Effect of Fuel Injection Location on Supersonic Hydrogen Combustion in a Cavity Based Model Scramjet Combustor," Energies, vol. 13, no. 1, p. 193, 2020.
  • [6] Y. Zhang, Y. Chen and Y. Sun, "Numerical and experimental examination of strut plus wall injection in a scramjet combustor," Advances in Mechanical Engineering, Springer, 2025.
  • [7] Y. Sun, F. Li, J. Zhu et al., "Effects of Additional Cavity Floor Injection on Ignition and Combustion in a Mach 2 Supersonic Flow," Energies, vol. 13, no. 18, p. 4801, 2020.
  • [8] Z. Liu et al., "Ignition and flame stabilization in an ethylene-fueled cavity stabilized scramjet engine," Proc. EUCASS Conf., 2022.
  • [9] N. Relangi, A. Ingenito and S. Jeyakumar, "Implications of Injection Locations in an Axisymmetric Cavity-Based Scramjet Combustor," Energies, vol. 14, p. 2626, 2021.
  • [10] F. Li, M. Sun, Z. Cai, Y. Chen, Y. Sun, F. Li and J. Zhu, "Effects of additional cavity floor injection on the ignition and combustion processes in a Mach 2 supersonic flow," Energies, vol. 13, no. 18, p. 4801, 2020.
  • [11] Y. Zhang, Y. Chen and Y. Sun, "Characteristics of Flame Stabilization Enhancement in a Strut Based Supersonic Combustor," Advances in Mechanical Engineering, Springer, 2025.
  • [12] X. Li et al., "Supersonic Combustion Mode Analysis of a Cavity Based Scramjet," Aerospace, MDPI, 2022.
  • [13] Z. Meng, C. Shen, K. Jia and H. He, "Numerical study on flame stabilization by shock-induced in a supersonic combustor with parallel-cavity: Symmetric configuration," Acta Astronaut., vol. 232, pp. 721–733, 2025.
  • [14] B. Lukovic, P. Orkwis, M. Turner and B. Sekar, "Effect of cavity L/D variations on neural network-based deterministic unsteadiness source terms," in Proc. 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002, p. 857, AIAA Paper 2002-0857.
  • [15] G. Choubey, M. Solanki, T. Bhatt, G. Kshitij, D. Yuvarajan and W. Huang, "Numerical investigation on a typical scramjet combustor using cavity floor H2 fuel injection strategy," Acta Astronautica, vol. 202, pp. 373–385, Jan. 2023.
  • [16] M. R. Gruber, R. A. Baurle, T. Mathur and K. Y. Hsu, "Fundamental studies of cavity-based flameholder concepts for supersonic combustors," Journal of Propulsion and Power, vol. 17, no. 1, pp. 146–153, 2001.
  • [17] M. Yüzücü, "Numerical Investigation of the Effect of Flameholder Geometry on Air-Fuel Mixing in Scramjet Engines," M.S. thesis, 2024.
  • [18] Z. Cai, M. Sun, Z. Wang and X. S. Bai, "Effect of cavity geometry on fuel transport and mixing processes in a scramjet combustor," Aerospace Science and Technology, vol. 80, pp. 309–314, Sep. 2018.
  • [19] T. Roos, A. Pudsey, M. Bricalli and H. Ogawa, "Cavity enhanced jet interactions in a scramjet combustor," Acta Astronautica, vol. 157, pp. 162–179, Apr. 2019.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil)
Bölüm Araştırma Makalesi
Yazarlar

Barış Akın

Mohammad Alobeid 0009-0001-9442-4650

Ahmed Emin Kılıç 0000-0002-8472-9426

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 11 Haziran 2025
Kabul Tarihi 19 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

APA Akın, B., Alobeid, M., & Kılıç, A. E. (2025). A Parametric and Performance-Based CFD Investigation Of The Effect Of Cavity Geometry and Location Of Injector On Flame Stabilization In Supersonic Flow. International Journal of Energy Horizon (IJEH), 1(1), 1-7.

© 2025 Energy Horizon. Tüm hakları saklıdır.
Sürdürülebilir enerji çözümlerini geliştirme motivasyonundan güç almaktayız.
ISSN: 3108-3722  | İletişim: ijeh@aybu.edu.tr