İnceleme Makalesi
BibTex RIS Kaynak Göster

Effect of Metal Foam Material Type and Porosity Pattern on Melting and Flow Dynamics in a Vertical Rectangular Cavity

Yıl 2025, Cilt: 1 Sayı: 1, 11 - 19, 30.06.2025

Öz

Phase change materials have an important role in the field of energy storage. However, due to their low thermal conductivity, transferring applied heat to the entire system is difficult. It negatively affects the lack of use of the systems. Researchers are investigating many applications to prevent this and increase the thermal conductivity of the system. One of these methods is the application of metal foam (MF) embedded inside the phase change material (PCM) in the system. This study investigated the melting and natural convection characteristics of a 2D-designed rectangular cavity, and copper and aluminum MFs were placed inside this cavity, which was separated into two equal compartments. The porosity of these MFs was ɛ=0.90 and 0.95, and their proximity to the heat source was examined. The Brinkman-Forchheimer extended Darcy model was used in the cases solved based on the finite volume and enthalpy-porosity method. The results showed that RC4 is the case that shows the fastest melting performance, and the solid-liquid interface is not affected by natural convection. Increasing the porosity from ɛ=0.90 to 0.95 caused natural convection to occur. In these parameters, natural convection increases the thermal resistance and makes it difficult to transfer heat to unmelted phase change materials. It was determined that RC1 is the case that shows the fastest melting after RC4. The melting times of RC4 in Section 1 (S1) and Section 2 (S2) are 2.5 and 1.4 times faster than RC1, respectively. Besides, the placement of MF and porosity significantly affected the Nusselt number (Nu). The average Nu of RC4 is higher than that of RC1, and RC5 at the rate of 34.4% and 48.4%, respectively. As melting progressed, a stationary region was formed in the center of the cavity due to melted PCM moving upward from the hot wall to the cold section.

Kaynakça

  • [1] A. Rahman, O. Farrok, and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic,” Renewable and Sustainable Energy Reviews, vol. 161, Art. no. 112279, 2022, doi: 10.1016/j.rser.2022.112279.
  • [2] A. Razmjoo, L. G. Kaigutha, M. A. Vaziri Rad, M. Marzband, A. Davarpanah, and M. Denai, “A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO₂ emissions in a high-potential area,” Renewable Energy, vol. 164, pp. 46–57, 2021, doi: 10.1016/j.renene.2020.09.042.
  • [3] G. Sadeghi, “Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges,” Energy Storage Materials, vol. 46, pp. 192–222, 2022, doi: 10.1016/j.ensm.2022.01.017.
  • [4] J. Mitali, S. Dhinakaran, and A. A. Mohamad, “Energy storage systems: a review,” Energy Storage and Saving, vol. 1, no. 3, pp. 166–216, 2022, doi: 10.1016/j.enss.2022.07.002.
  • [5] I. Sarbu and C. Sebarchievici, “A comprehensive review of thermal energy storage,” Sustainability, vol. 10, no. 1, Art. no. 191, 2018, doi: 10.3390/su10010191.
  • [6] S. Khare, M. Dell’Amico, C. Knight, and S. McGarry, “Selection of materials for high temperature latent heat energy storage,” Solar Energy Materials and Solar Cells, vol. 107, pp. 20–27, 2012, doi: 10.1016/j.solmat.2012.07.020.
  • [7] N. Nallusamy, S. Sampath, and R. Velraj, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renew. Energy, vol. 32, no. 7, pp. 1206–1227, 2007, doi: 10.1016/j.renene.2006.04.015
  • [8] N. Alipour, B. Jafari, and K. Hosseinzadeh, “Analysis of the impact of metal foam with phase change material on solar photovoltaic thermal system efficiency,” Journal of Energy Storage, vol. 98, Art. no. 113064, 2024, doi: 10.1016/j.est.2024.113064.
  • [9] H. Li, C. Hu, Y. He, D. Tang, K. Wang, and X. Hu, “Visualized-experimental investigation on the energy storage performance of PCM infiltrated in metal foam with varying pore densities,” Energy, vol. 237, Art. no. 121540, 2021, doi: 10.1016/j.energy.2021.121540.
  • [10] H. A. Ahmadi, N. Variji, A. Kaabinejadian, M. Moghimi, and M. Siavashi, “Optimal design and sensitivity analysis of energy storage for concentrated solar power plants using phase change material by gradient metal foams,” Journal of Energy Storage, vol. 35, Art. no. 102233, 2021, doi: 10.1016/j.est.2021.102233.
  • [11] N. Prasanth, M. Sharma, R. N. Yadav, and P. Jain, “Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy,” Journal of Energy Storage, vol. 32, Art. no. 101990, 2020, doi: 10.1016/j.est.2020.101990.
  • [12] A. Parida, A. Bhattacharya, and P. Rath, “Effect of convection on melting characteristics of phase change material-metal foam composite thermal energy storage system,” Journal of Energy Storage, vol. 32, Art. no. 101804, 2020, doi: 10.1016/j.est.2020.101804.
  • [13] C. Nie, J. Liu, and S. Deng, “Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage,” International Journal of Heat and Mass Transfer, vol. 165, Art. no. 120652, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120652.
  • [14] A. R. Karimi, M. Siavashi, M. Tahmasbi, and A. M. Norouzi, “Experimental analysis to improve charge/discharge of thermal energy storage in phase change materials using helical coil and porous metal foam,” Journal of Energy Storage, vol. 55, Art. no. 105759, 2022, doi: 10.1016/j.est.2022.105759.
  • [15] M. Ghalambaz, M. Fteiti, O. Younis, M. Sheremet, and H. A. Hasan, “An improved latent heat thermal energy storage using two layers of metal foams,” Appl. Therm. Eng., vol. 234, p. 121319, 2023, doi: 10.1016/j.applthermaleng.2023.121319.
  • [16] S. Liu, H. Wang, Q. Ying, and L. Guo, “Numerical study on the combined application of multiple phase change materials and gradient metal foam in thermal energy storage device,” Appl. Therm. Eng., vol. 257, p. 124267, 2024, doi: 10.1016/j.applthermaleng.2024.124267.
  • [17] V. Joshi and M. K. Rathod, “Experimental and numerical assessments of thermal transport in fins and metal foam infused latent heat thermal energy storage systems: A comparative evaluation,” Appl. Therm. Eng., vol. 178, p. 115518, 2020, doi: 10.1016/j.applthermaleng.2020.115518.
  • [18] Z. Haddad, F. Iachachene, M. A. Sheremet, and E. Abu-Nada, “Numerical investigation and optimization of melting performance for thermal energy storage system partially filled with metal foam layer: New design configurations,” Appl. Therm. Eng., vol. 223, p. 119809, 2023, doi: 10.1016/j.applthermaleng.2022.119809.
  • [19] S. A. M. Mehryan, K. A. Ayoubloo, M. Mahdavi, O. Younis, Z. Kazemi, M. Ghodrat, and M. Ghalambaz, “Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: A numerical study,” J. Energy Storage, vol. 48, p. 103950, 2022, doi: 10.1016/j.est.2021.103950.
  • [20] A. Chibani, S. Merouani, and F. Benmoussa, “Computational analysis of the melting process of phase change material–metal foam-based latent thermal energy storage unit: The heat exchanger configuration,” J. Energy Storage, vol. 42, p. 103071, 2021, doi: 10.1016/j.est.2021.103071.
  • [21] R. M. K. Ali and S. Lafta Ghashim, “Numerical analysis of the heat transfer enhancement by using metal foam,” Case Stud. Therm. Eng., vol. 49, p. 103336, 2023, doi: 10.1016/j.csite.2023.103336.
  • [22] A. Arshad, M. Jabbal, H. Faraji, P. Talebizadehsardari, M. A. Bashir, and Y. Yan, “Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics,” J. Energy Storage, vol. 48, p. 103882, 2022, doi: 10.1016/j.est.2021.103882.
  • [23] M. Valizade, M. M. Heyhat, and M. Maerefat, “Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption,” Renew. Energy, vol. 145, pp. 261–269, 2020, doi: 10.1016/j.renene.2019.05.112.
  • [24] A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988, doi: 10.1080/10407788808913615.
  • [25] K. Vafai and S. J. Kim, “On the limitations of the Brinkman–Forchheimer-extended Darcy equation,” Int. J. Heat Fluid Flow, vol. 16, no. 1, pp. 11–15, 1995, doi: 10.1016/0142-727X(94)00002-T.
  • [26] S. Pati, A. Borah, M. P. Boruah, and P. R. Randive, “Critical review on local thermal equilibrium and local thermal non-equilibrium approaches for the analysis of forced convective flow through porous media,” Int. Commun. Heat Mass Transf., vol. 132, p. 105889, 2022, doi: 10.1016/j.icheatmasstransfer.2022.105889.
  • [27] Q. Ying, H. Wang, and E. Lichtfouse, “Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials,” Appl. Therm. Eng., vol. 229, p. 120573, 2023, doi: 10.1016/j.applthermaleng.2023.120573.
  • [28] T. Bouzennada, A. Abderrahmane, O. Younis, M. Oreijah, K. Guedri, C. Maatki, and L. Kolsi, “Numerical simulation of heat transfer and melting process in a NEPCM: Using new fin shape,” Int. Commun. Heat Mass Transf., vol. 143, p. 106711, 2023, doi: 10.1016/J.ICHEATMASSTRANSFER.2023.106711.
  • [29] ANSYS Inc., ANSYS FLUENT Theory Guide, Canonsburg, PA, USA: ANSYS Inc., 2011, p. 794.
  • [30] S. Huang, J. Lu, and Y. Li, “Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units,” Energy, vol. 239, p. 122489, 2022, doi: 10.101/10.1016/J.ENERGY.2021.122489.
  • [31] N. S. Dhaidan and A. F. Khalaf, “Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell,” Int. Commun. Heat Mass Transf., vol. 111, p. 104476, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104476.
  • [32] C. Ji, Z. Qin, S. Dubey, F. H. Choo, and F. Duan, “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transf., vol. 127, pp. 255–265, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.07.118.
  • [33] N. S. Bondareva and M. A. Sheremet, “Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material,” Energy, vol. 296, p. 131123, 2024, doi: 10.1016/j.energy.2024.131123.

Dikey Dikdörtgen Bir Boşlukta Metal Köpük Malzeme Tipi ve Gözeneklilik Deseninin Erime ve Akış Dinamikleri Üzerindeki Etkisi

Yıl 2025, Cilt: 1 Sayı: 1, 11 - 19, 30.06.2025

Öz

Faz değişim malzemeleri enerji depolama alanında önemli bir role sahiptir. Ancak düşük ısıl iletkenlikleri nedeniyle uygulanan ısının tüm sisteme aktarılması zordur. Sistemlerin kullanılmamasını olumsuz yönde etkiler. Araştırmacılar bunu önlemek ve sistemin ısıl iletkenliğini artırmak için birçok uygulama araştırmaktadır. Bu yöntemlerden biri de sistemdeki faz değişim malzemesinin (PCM) içine gömülmüş metal köpük (MF) uygulamasıdır. Bu çalışmada iki boyutlu tasarlanmış dikdörtgen bir boşluğun erime ve doğal taşınım karakteristikleri incelenmiş olup, bu boşluğa iki eşit bölmeye ayrılmış bakır ve alüminyum MF'ler yerleştirilmiştir. Bu MF'lerin gözenekliliği ɛ=0,90 ve 0,95 olup ısı kaynağına yakınlıkları incelenmiştir. Sonlu hacim ve entalpi-gözeneklilik yöntemine göre çözülen vakalarda Brinkman-Forchheimer genişletilmiş Darcy modeli kullanılmıştır. Sonuçlar, RC4'ün en hızlı erime performansını gösteren durum olduğunu ve katı-sıvı arayüzünün doğal taşınımdan etkilenmediğini göstermiştir. Gözenekliliğin ɛ=0,90'dan 0,95'e çıkarılması doğal taşınımın oluşmasına neden olmuştur. Bu parametrelerde doğal taşınım ısıl direnci artırarak erimemiş faz değişim malzemelerine ısı transferini zorlaştırmaktadır. RC4'ten sonra en hızlı erimeyi gösteren durumun RC1 olduğu belirlenmiştir. Kesit 1 (S1) ve Kesit 2'deki (S2) RC4'ün erime süreleri sırasıyla RC1'den 2,5 ve 1,4 kat daha hızlıdır. Ayrıca, MF'nin yerleştirilmesi ve gözeneklilik Nusselt sayısını (Nu) önemli ölçüde etkilemiştir. RC4'ün ortalama Nu değeri RC1'den %34,4 ve RC5'ten %48,4 oranında daha yüksektir. Erime ilerledikçe erimiş PCM'nin sıcak duvardan soğuk bölüme doğru yukarı doğru hareket etmesi nedeniyle boşluğun merkezinde durağan bir bölge oluşmuştur.

Kaynakça

  • [1] A. Rahman, O. Farrok, and M. M. Haque, “Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic,” Renewable and Sustainable Energy Reviews, vol. 161, Art. no. 112279, 2022, doi: 10.1016/j.rser.2022.112279.
  • [2] A. Razmjoo, L. G. Kaigutha, M. A. Vaziri Rad, M. Marzband, A. Davarpanah, and M. Denai, “A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO₂ emissions in a high-potential area,” Renewable Energy, vol. 164, pp. 46–57, 2021, doi: 10.1016/j.renene.2020.09.042.
  • [3] G. Sadeghi, “Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges,” Energy Storage Materials, vol. 46, pp. 192–222, 2022, doi: 10.1016/j.ensm.2022.01.017.
  • [4] J. Mitali, S. Dhinakaran, and A. A. Mohamad, “Energy storage systems: a review,” Energy Storage and Saving, vol. 1, no. 3, pp. 166–216, 2022, doi: 10.1016/j.enss.2022.07.002.
  • [5] I. Sarbu and C. Sebarchievici, “A comprehensive review of thermal energy storage,” Sustainability, vol. 10, no. 1, Art. no. 191, 2018, doi: 10.3390/su10010191.
  • [6] S. Khare, M. Dell’Amico, C. Knight, and S. McGarry, “Selection of materials for high temperature latent heat energy storage,” Solar Energy Materials and Solar Cells, vol. 107, pp. 20–27, 2012, doi: 10.1016/j.solmat.2012.07.020.
  • [7] N. Nallusamy, S. Sampath, and R. Velraj, “Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources,” Renew. Energy, vol. 32, no. 7, pp. 1206–1227, 2007, doi: 10.1016/j.renene.2006.04.015
  • [8] N. Alipour, B. Jafari, and K. Hosseinzadeh, “Analysis of the impact of metal foam with phase change material on solar photovoltaic thermal system efficiency,” Journal of Energy Storage, vol. 98, Art. no. 113064, 2024, doi: 10.1016/j.est.2024.113064.
  • [9] H. Li, C. Hu, Y. He, D. Tang, K. Wang, and X. Hu, “Visualized-experimental investigation on the energy storage performance of PCM infiltrated in metal foam with varying pore densities,” Energy, vol. 237, Art. no. 121540, 2021, doi: 10.1016/j.energy.2021.121540.
  • [10] H. A. Ahmadi, N. Variji, A. Kaabinejadian, M. Moghimi, and M. Siavashi, “Optimal design and sensitivity analysis of energy storage for concentrated solar power plants using phase change material by gradient metal foams,” Journal of Energy Storage, vol. 35, Art. no. 102233, 2021, doi: 10.1016/j.est.2021.102233.
  • [11] N. Prasanth, M. Sharma, R. N. Yadav, and P. Jain, “Designing of latent heat thermal energy storage systems using metal porous structures for storing solar energy,” Journal of Energy Storage, vol. 32, Art. no. 101990, 2020, doi: 10.1016/j.est.2020.101990.
  • [12] A. Parida, A. Bhattacharya, and P. Rath, “Effect of convection on melting characteristics of phase change material-metal foam composite thermal energy storage system,” Journal of Energy Storage, vol. 32, Art. no. 101804, 2020, doi: 10.1016/j.est.2020.101804.
  • [13] C. Nie, J. Liu, and S. Deng, “Effect of geometry modification on the thermal response of composite metal foam/phase change material for thermal energy storage,” International Journal of Heat and Mass Transfer, vol. 165, Art. no. 120652, 2021, doi: 10.1016/j.ijheatmasstransfer.2020.120652.
  • [14] A. R. Karimi, M. Siavashi, M. Tahmasbi, and A. M. Norouzi, “Experimental analysis to improve charge/discharge of thermal energy storage in phase change materials using helical coil and porous metal foam,” Journal of Energy Storage, vol. 55, Art. no. 105759, 2022, doi: 10.1016/j.est.2022.105759.
  • [15] M. Ghalambaz, M. Fteiti, O. Younis, M. Sheremet, and H. A. Hasan, “An improved latent heat thermal energy storage using two layers of metal foams,” Appl. Therm. Eng., vol. 234, p. 121319, 2023, doi: 10.1016/j.applthermaleng.2023.121319.
  • [16] S. Liu, H. Wang, Q. Ying, and L. Guo, “Numerical study on the combined application of multiple phase change materials and gradient metal foam in thermal energy storage device,” Appl. Therm. Eng., vol. 257, p. 124267, 2024, doi: 10.1016/j.applthermaleng.2024.124267.
  • [17] V. Joshi and M. K. Rathod, “Experimental and numerical assessments of thermal transport in fins and metal foam infused latent heat thermal energy storage systems: A comparative evaluation,” Appl. Therm. Eng., vol. 178, p. 115518, 2020, doi: 10.1016/j.applthermaleng.2020.115518.
  • [18] Z. Haddad, F. Iachachene, M. A. Sheremet, and E. Abu-Nada, “Numerical investigation and optimization of melting performance for thermal energy storage system partially filled with metal foam layer: New design configurations,” Appl. Therm. Eng., vol. 223, p. 119809, 2023, doi: 10.1016/j.applthermaleng.2022.119809.
  • [19] S. A. M. Mehryan, K. A. Ayoubloo, M. Mahdavi, O. Younis, Z. Kazemi, M. Ghodrat, and M. Ghalambaz, “Optimum configuration of a metal foam layer for a fast thermal charging energy storage unit: A numerical study,” J. Energy Storage, vol. 48, p. 103950, 2022, doi: 10.1016/j.est.2021.103950.
  • [20] A. Chibani, S. Merouani, and F. Benmoussa, “Computational analysis of the melting process of phase change material–metal foam-based latent thermal energy storage unit: The heat exchanger configuration,” J. Energy Storage, vol. 42, p. 103071, 2021, doi: 10.1016/j.est.2021.103071.
  • [21] R. M. K. Ali and S. Lafta Ghashim, “Numerical analysis of the heat transfer enhancement by using metal foam,” Case Stud. Therm. Eng., vol. 49, p. 103336, 2023, doi: 10.1016/j.csite.2023.103336.
  • [22] A. Arshad, M. Jabbal, H. Faraji, P. Talebizadehsardari, M. A. Bashir, and Y. Yan, “Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics,” J. Energy Storage, vol. 48, p. 103882, 2022, doi: 10.1016/j.est.2021.103882.
  • [23] M. Valizade, M. M. Heyhat, and M. Maerefat, “Experimental study of the thermal behavior of direct absorption parabolic trough collector by applying copper metal foam as volumetric solar absorption,” Renew. Energy, vol. 145, pp. 261–269, 2020, doi: 10.1016/j.renene.2019.05.112.
  • [24] A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988, doi: 10.1080/10407788808913615.
  • [25] K. Vafai and S. J. Kim, “On the limitations of the Brinkman–Forchheimer-extended Darcy equation,” Int. J. Heat Fluid Flow, vol. 16, no. 1, pp. 11–15, 1995, doi: 10.1016/0142-727X(94)00002-T.
  • [26] S. Pati, A. Borah, M. P. Boruah, and P. R. Randive, “Critical review on local thermal equilibrium and local thermal non-equilibrium approaches for the analysis of forced convective flow through porous media,” Int. Commun. Heat Mass Transf., vol. 132, p. 105889, 2022, doi: 10.1016/j.icheatmasstransfer.2022.105889.
  • [27] Q. Ying, H. Wang, and E. Lichtfouse, “Numerical simulation on thermal behavior of partially filled metal foam composite phase change materials,” Appl. Therm. Eng., vol. 229, p. 120573, 2023, doi: 10.1016/j.applthermaleng.2023.120573.
  • [28] T. Bouzennada, A. Abderrahmane, O. Younis, M. Oreijah, K. Guedri, C. Maatki, and L. Kolsi, “Numerical simulation of heat transfer and melting process in a NEPCM: Using new fin shape,” Int. Commun. Heat Mass Transf., vol. 143, p. 106711, 2023, doi: 10.1016/J.ICHEATMASSTRANSFER.2023.106711.
  • [29] ANSYS Inc., ANSYS FLUENT Theory Guide, Canonsburg, PA, USA: ANSYS Inc., 2011, p. 794.
  • [30] S. Huang, J. Lu, and Y. Li, “Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units,” Energy, vol. 239, p. 122489, 2022, doi: 10.101/10.1016/J.ENERGY.2021.122489.
  • [31] N. S. Dhaidan and A. F. Khalaf, “Experimental evaluation of the melting behaviours of paraffin within a hemicylindrical storage cell,” Int. Commun. Heat Mass Transf., vol. 111, p. 104476, 2020, doi: 10.1016/j.icheatmasstransfer.2020.104476.
  • [32] C. Ji, Z. Qin, S. Dubey, F. H. Choo, and F. Duan, “Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection,” Int. J. Heat Mass Transf., vol. 127, pp. 255–265, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.07.118.
  • [33] N. S. Bondareva and M. A. Sheremet, “Numerical simulation of heat transfer performance in an enclosure filled with a metal foam and nano-enhanced phase change material,” Energy, vol. 296, p. 131123, 2024, doi: 10.1016/j.energy.2024.131123.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil), Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Emrehan Gürsoy 0000-0003-2373-3357

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 13 Haziran 2025
Kabul Tarihi 23 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 1

Kaynak Göster

APA Gürsoy, E. (2025). Effect of Metal Foam Material Type and Porosity Pattern on Melting and Flow Dynamics in a Vertical Rectangular Cavity. International Journal of Energy Horizon (IJEH), 1(1), 11-19.

© 2025 Energy Horizon. Tüm hakları saklıdır.
Sürdürülebilir enerji çözümlerini geliştirme motivasyonundan güç almaktayız.
ISSN: [ ] | İletişim: [ +90 312 906 2835]