BibTex RIS Kaynak Göster

AN APPLICATION OF GEOMETRIC PROGRAMMING

Yıl 2012, Cilt: 2 Sayı: 2, 157 - 161, 01.12.2012

Öz

A Geometric Program (GP) is a type of mathematical optimization problem characterized by objective and constraint functions that have a special form. The basic approach in GP modeling is to attempt to express a practical problem, such as an engineering analysis or design problem, in GP format. In this study, using Douglas production function, between the years 2006-2009 in the construction sector in Turkey estimates of labor and capital index values were obtained. Geometric Programming Algorithms for the calculation was carried out with the Matlab Toolbox software

Kaynakça

  • Boyd, Stephen, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • Chiang, Mung, Geometric Programming for Communication Systems, Now Publishers Inc., The Netherlands, 2005.
  • Choi, Wanseok, Johan Lim, Xinlei Wang, Maximum likelihood estimation of ordered multinomial probabilities by geometric programming, Computational Statistics and Data Analysis 53 (2009) 889_893.
  • Creese, Robert C., Geometric Programming for Design and Cost Optimization, Morgan&Claypool Publishers, England, 2010.
  • Duffin, R. J., E. L. Peterson, and C. Zener, Geometric Programming: Theory and Applications, Wiley, 1967.
  • Islam, Sahidul, Multi-objective marketing planning inventory model: A geometric programming approach, Applied Mathematics and Computation 205 (2008) 238–246.
  • Jiao, Hong-Wei, Pei-Ping Shen, Xiao-ai Li, Accelerating method of global optimization for signomial geometric programming, Journal of Computational and Applied Mathematics 214 (2008) 66 – 77.
  • Li, Yiming, Ying-Chieh Chen, Temperature-aware floorplanning via geometric programming, Mathematical and Computer Modelling 51 (2010) 927_934.
  • Liu, Shiang-Tai, A geometric programming approach to profit maximization, Applied Mathematics and Computation 182 (2006) –1097.
  • Liu, Shiang-Tai, Profit maximization with quantity discount: An application of geometric Computation 190 (2007) 1723–1729.
  • Optimization and Economic Analysis, Springer Science+Business Media, 2000.
  • Tan, Bao Hong, Cobb-Douglas Production Function, http://www.math.cmu.edu/~howell4/ teaching/tanproj.pdf, (06.04.2010).
  • Wu, Yan-Kuen, Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints, Mathematical and Computer Modelling 47 (2008) 352–362.
  • Yousefli, A., S.J. Sadjadi, M. Ghazanfari, Fuzzy pricing and marketing planning model: A possibilistic geometric programming approach, Expert Systems with Applications (2010) 3392–3397.
  • Matlab Optiimization, http://tomopt.com/, (08.04.2010).
  • Türkiye İstatistik Kurumu, http://www.tuik.gov.tr/VeriBilgi.do?tb_id=62 &ust_id=9 (12.04.2010).
Yıl 2012, Cilt: 2 Sayı: 2, 157 - 161, 01.12.2012

Öz

Kaynakça

  • Boyd, Stephen, Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • Chiang, Mung, Geometric Programming for Communication Systems, Now Publishers Inc., The Netherlands, 2005.
  • Choi, Wanseok, Johan Lim, Xinlei Wang, Maximum likelihood estimation of ordered multinomial probabilities by geometric programming, Computational Statistics and Data Analysis 53 (2009) 889_893.
  • Creese, Robert C., Geometric Programming for Design and Cost Optimization, Morgan&Claypool Publishers, England, 2010.
  • Duffin, R. J., E. L. Peterson, and C. Zener, Geometric Programming: Theory and Applications, Wiley, 1967.
  • Islam, Sahidul, Multi-objective marketing planning inventory model: A geometric programming approach, Applied Mathematics and Computation 205 (2008) 238–246.
  • Jiao, Hong-Wei, Pei-Ping Shen, Xiao-ai Li, Accelerating method of global optimization for signomial geometric programming, Journal of Computational and Applied Mathematics 214 (2008) 66 – 77.
  • Li, Yiming, Ying-Chieh Chen, Temperature-aware floorplanning via geometric programming, Mathematical and Computer Modelling 51 (2010) 927_934.
  • Liu, Shiang-Tai, A geometric programming approach to profit maximization, Applied Mathematics and Computation 182 (2006) –1097.
  • Liu, Shiang-Tai, Profit maximization with quantity discount: An application of geometric Computation 190 (2007) 1723–1729.
  • Optimization and Economic Analysis, Springer Science+Business Media, 2000.
  • Tan, Bao Hong, Cobb-Douglas Production Function, http://www.math.cmu.edu/~howell4/ teaching/tanproj.pdf, (06.04.2010).
  • Wu, Yan-Kuen, Optimizing the geometric programming problem with single-term exponents subject to max–min fuzzy relational equation constraints, Mathematical and Computer Modelling 47 (2008) 352–362.
  • Yousefli, A., S.J. Sadjadi, M. Ghazanfari, Fuzzy pricing and marketing planning model: A possibilistic geometric programming approach, Expert Systems with Applications (2010) 3392–3397.
  • Matlab Optiimization, http://tomopt.com/, (08.04.2010).
  • Türkiye İstatistik Kurumu, http://www.tuik.gov.tr/VeriBilgi.do?tb_id=62 &ust_id=9 (12.04.2010).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA94CJ65YK
Bölüm Makaleler
Yazarlar

Ibrahim Guney Bu kişi benim

Ersoy Oz Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 2 Sayı: 2

Kaynak Göster

APA Guney, I., & Oz, E. (2012). AN APPLICATION OF GEOMETRIC PROGRAMMING. International Journal of Electronics Mechanical and Mechatronics Engineering, 2(2), 157-161.