Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of factors affecting photovoltaic thermal system efficiency

Yıl 2024, , 93 - 113, 22.03.2024
https://doi.org/10.58559/ijes.1411663

Öz

This experimental study investigates the effects of ambient temperature (Tamb) and solar irradiance on the efficiency of photovoltaic panels (ηPV). Experiments have shown that increasing these parameters, which affect ηPV, also raises panel Tcell, leading to decreased electrical energy production. A photovoltaic thermal (PV/T) system was created to enhance the ηPV by reducing Tcell. The excess heat generated in the cells is stored as hot water in this system. In the experiments, water was used as the heat transfer fluid (HTF) to lower the temperature of the PV panel. A closed loop with a 25-liter tank volume circulated the water at a constant mass flow rate of 0.0161 kg/s. The heat transferred from the panel cells to the HTF was accumulated in a 50-liter water tank. The ηth of a standard PV panel and a PV/T system, with and without a fan-cooled heat exchanger, was assessed. The results showed that the ηelec of the system without a fan-cooled heat exchanger increased by 2%. However, for systems designed for maximum efficiency, the presence of the fan-cooled heat exchanger caused a 13% reduction in ηth. Additionally, the temperature of the water in the tank increased by 50%. The efficiency of the designed PV/T system was analyzed without the use of a fan-cooled heat exchanger. The 8-hour average thermal efficiency was calculated to be 66.53%, with an electrical efficiency of 3.42%. The results are presented in graphs for better data visualization.

Destekleyen Kurum

Mersin University

Proje Numarası

2022-2-TP3-4727

Kaynakça

  • [1] Beyazit Nİ, Bulut H, Ünal F. Diyarbakır ili için uzun dönemli güneş radyasyonunun ekserji analizi. Harran Üniversitesi Mühendislik Dergisi 2019; 4(2): 1-6.
  • [2] Beyazit Nİ, Ünal F, Bulut H. Modeling of the hourly horizontal solar diffuse radiation in Şanlıurfa, Turkey. Thermal Science Engineering Progress Part A 2020; 24(2): 939-950.
  • [3] Arslan G, Bayhan B, Yaman K. Estimation of measured global solar radiation by artificial neural networks for Mersin, Turkey, and comparison with common solar radiation models. GU Journal Sci, Part C 2019; 7(1): 80-96.
  • [4] Ceylan İ, Gürel A. Güneş enerjisi sistemleri ve tasarımı. Bursa, Turkey: Dora Yayıncılık, 2017.
  • [5] Liu Z, Jin Z, Li G, Zhao X, Badiei A. Study on the performance of a novel photovoltaic/thermal system combining photocatalytic and organic photovoltaic cells. Energy Conversion Management 2022; 251: 114967. https://doi.org/10.1016/j.enconman.2021.114967.
  • [6] Menon GS, Murali S, Elias J, Delfiya DA, Alfiya P, Samuel M. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 2022; 188: 986-996.
  • [7] Eteiba M, El Shenawy E, Shazly J, Hafez A. A photovoltaic (cell, module, array) simulation and monitoring model using Matlab-Gui Interface. International Journal of Computer Applications 2013; 69(6): 14-28.
  • [8] Humada AM, Hojabri M, Mekhilef S, Hamada HM. Solar cell parameters extraction based on single and double-diode models: a review. Renewable Sustainable Energy Reviews 2016; 56: 494-509. https://doi.org/10.1016/j.rser.2015.11.051
  • [9] El Hammoumi A, Chtita S, Motahhir S, El Ghzizal A. Solar PV Energy: From material to use, and the most commonly used techniques to maximize the power output of pv systems: a focus on solar trackers and floating solar panels. Energy Reports 2022; 8: 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.054.
  • [10] Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E. Energy efficiency of PV panels under real outdoor conditions–an experimental assessment in athens, Greece. Renewable Energy 2017; 101(C): 236-243, 2017. https://doi.org/10.1016/j.renene.2016.08.051.
  • [11] Singh K, Singh S, Kandpal DC, Kumar R. Experimental performance study of photovoltaic solar panel with and without water circulation. Materials Today: Proceedings 2021; 46(15): 6822-6827.
  • [12] Dölek S, Arslan G, Soğutma debisinin fotovoltaik ısıl sistem verimine etkisi. International Journal of Advanced Natural Sciences and Engineering Researches, 2023; 7(6): 206–213. https://doi.org/10.59287/ijanser.1155.
  • [13] Yang X, Sun L, Yuan Y, Zhao X, Cao X. Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renewable Energy. 2018; 119: 152-159. https://doi.org/10.1016/j.renene.2017.11.094.
  • [14] Moradgholi M, Nowee SM, Abrishamchi I. Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Solar Energy 2014; 107: 82-88. https://doi.org/10.1016/J.SOLENER.2014.05.018.
  • [15] Karimi F, Xu H, Wang Z, Chen J, Yang M. Experimental study of a concentrated PV/T system using linear fresnel lens. Energy 2017; 123: 402-412. doi.org/10.1016/j.energy.2017.02.028
  • [16] Huo Y, Lv J, Li X, Fang L, Ma X, Shi Q. Experimental study on the tube plate PV/T system with iron filings filled. Solar Energy 2019; 185: 189-198. doi.org/10.1016/j.solener.2019.04.041.
  • [17] Huang CY, Sung HC, Yen KL. Experimental study of photovoltaic/thermal (PV/T) hybrid system. Int. J. Smart Grid Clean Energy 2013; 2(2): 148-151.
  • [18] Gang P, Huide F, Tao Z, Jie J. A numerical and experimental study on a heat pipe PV/T system. Solar Energy 2011; 85(5) 911-921. https://doi.org/10.1016/j.solener.2011.02.006.
  • [19] Bahaidarah H, Subhan A, Gandhidasan P, Rehman S. Performance evaluation of a PV (Photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013; 59: 445-453. https://doi.org/10.1016/j.energy.2013.07.050.
  • [20] Senthilraja S, Gangadevi R, Marimuthu R, Baskaran M. Performance evaluation of water and air based PVT solar collector for hydrogen production application. International Journal of Hydrogen Energy 2020; 45(13): 7498-7507. https://doi.org/10.1016/j.ijhydene.2019.02.223.
  • [21] Tonui JK, Tripanagnostopoulos Y. Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy 2008; 82(1); 1-12. doi.org/10.1016/j.solener.2007.06.004.
  • [22] Ji J, Lu JP, Chow TT, He W, Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy 2007; 84(2): 222-237. https://doi.org/10.1016/j.apenergy.2006.04.009.
  • [23] Huang B, Lin T, Hung W, Sun F. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy 2001; 70(5): 443-448. https://doi.org/10.1016/S0038-092X(00)00153-5.
  • [24] Pei G, Zhang T, Yu Z, Fu H, Ji J. Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power Energy 2011; 225(3): 271-278. https://doi.org/10.1177/2041296710394271.
  • [25] Farghally H, Ahmed N, El-Madany H, Atia D, Fahmy F. Design and sensitivity analysis of photovoltaic/thermal solar collector. International Energy Journal 2015; 15(1): 21-32.
  • [26] Ghoneim A, Aljanabi M, Al-Hasan A, Mohammedein A. Thermal and electrical performance of hybrid photovoltaic-thermal collector. International Energy Journal 2009; 10(1): 19-28, 2009.
  • [27] Kline SJ. Describing uncertainties in single-sample experiments. Mechanical Engineering 1963; 75: 3-8.
  • [28] Al-Waeli AH, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN. An experimental investigation of sic nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conv. and Manag. 2017; 142: 547-558. https://doi.org/10.1016/j.enconman.2017.03.076.
  • [29] Bhattarai S, Oh JH, Euh SH, Kafle GK, Kim DH. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials Solar Cells 2012; 103: 184-193. https://doi.org/10.1016/j.solmat.2012.04.017.
  • [30] Sopian K, Al-Waeli AH, Kazem HA. Advanced photovoltaic thermal collectors. Proceedings of The Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2020; 234(2): 206-213. https://doi.org/10.1177/0954408919869541.
Yıl 2024, , 93 - 113, 22.03.2024
https://doi.org/10.58559/ijes.1411663

Öz

Proje Numarası

2022-2-TP3-4727

Kaynakça

  • [1] Beyazit Nİ, Bulut H, Ünal F. Diyarbakır ili için uzun dönemli güneş radyasyonunun ekserji analizi. Harran Üniversitesi Mühendislik Dergisi 2019; 4(2): 1-6.
  • [2] Beyazit Nİ, Ünal F, Bulut H. Modeling of the hourly horizontal solar diffuse radiation in Şanlıurfa, Turkey. Thermal Science Engineering Progress Part A 2020; 24(2): 939-950.
  • [3] Arslan G, Bayhan B, Yaman K. Estimation of measured global solar radiation by artificial neural networks for Mersin, Turkey, and comparison with common solar radiation models. GU Journal Sci, Part C 2019; 7(1): 80-96.
  • [4] Ceylan İ, Gürel A. Güneş enerjisi sistemleri ve tasarımı. Bursa, Turkey: Dora Yayıncılık, 2017.
  • [5] Liu Z, Jin Z, Li G, Zhao X, Badiei A. Study on the performance of a novel photovoltaic/thermal system combining photocatalytic and organic photovoltaic cells. Energy Conversion Management 2022; 251: 114967. https://doi.org/10.1016/j.enconman.2021.114967.
  • [6] Menon GS, Murali S, Elias J, Delfiya DA, Alfiya P, Samuel M. Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 2022; 188: 986-996.
  • [7] Eteiba M, El Shenawy E, Shazly J, Hafez A. A photovoltaic (cell, module, array) simulation and monitoring model using Matlab-Gui Interface. International Journal of Computer Applications 2013; 69(6): 14-28.
  • [8] Humada AM, Hojabri M, Mekhilef S, Hamada HM. Solar cell parameters extraction based on single and double-diode models: a review. Renewable Sustainable Energy Reviews 2016; 56: 494-509. https://doi.org/10.1016/j.rser.2015.11.051
  • [9] El Hammoumi A, Chtita S, Motahhir S, El Ghzizal A. Solar PV Energy: From material to use, and the most commonly used techniques to maximize the power output of pv systems: a focus on solar trackers and floating solar panels. Energy Reports 2022; 8: 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.054.
  • [10] Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E. Energy efficiency of PV panels under real outdoor conditions–an experimental assessment in athens, Greece. Renewable Energy 2017; 101(C): 236-243, 2017. https://doi.org/10.1016/j.renene.2016.08.051.
  • [11] Singh K, Singh S, Kandpal DC, Kumar R. Experimental performance study of photovoltaic solar panel with and without water circulation. Materials Today: Proceedings 2021; 46(15): 6822-6827.
  • [12] Dölek S, Arslan G, Soğutma debisinin fotovoltaik ısıl sistem verimine etkisi. International Journal of Advanced Natural Sciences and Engineering Researches, 2023; 7(6): 206–213. https://doi.org/10.59287/ijanser.1155.
  • [13] Yang X, Sun L, Yuan Y, Zhao X, Cao X. Experimental investigation on performance comparison of PV/T-PCM system and PV/T system. Renewable Energy. 2018; 119: 152-159. https://doi.org/10.1016/j.renene.2017.11.094.
  • [14] Moradgholi M, Nowee SM, Abrishamchi I. Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system. Solar Energy 2014; 107: 82-88. https://doi.org/10.1016/J.SOLENER.2014.05.018.
  • [15] Karimi F, Xu H, Wang Z, Chen J, Yang M. Experimental study of a concentrated PV/T system using linear fresnel lens. Energy 2017; 123: 402-412. doi.org/10.1016/j.energy.2017.02.028
  • [16] Huo Y, Lv J, Li X, Fang L, Ma X, Shi Q. Experimental study on the tube plate PV/T system with iron filings filled. Solar Energy 2019; 185: 189-198. doi.org/10.1016/j.solener.2019.04.041.
  • [17] Huang CY, Sung HC, Yen KL. Experimental study of photovoltaic/thermal (PV/T) hybrid system. Int. J. Smart Grid Clean Energy 2013; 2(2): 148-151.
  • [18] Gang P, Huide F, Tao Z, Jie J. A numerical and experimental study on a heat pipe PV/T system. Solar Energy 2011; 85(5) 911-921. https://doi.org/10.1016/j.solener.2011.02.006.
  • [19] Bahaidarah H, Subhan A, Gandhidasan P, Rehman S. Performance evaluation of a PV (Photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013; 59: 445-453. https://doi.org/10.1016/j.energy.2013.07.050.
  • [20] Senthilraja S, Gangadevi R, Marimuthu R, Baskaran M. Performance evaluation of water and air based PVT solar collector for hydrogen production application. International Journal of Hydrogen Energy 2020; 45(13): 7498-7507. https://doi.org/10.1016/j.ijhydene.2019.02.223.
  • [21] Tonui JK, Tripanagnostopoulos Y. Performance improvement of PV/T solar collectors with natural air flow operation. Solar Energy 2008; 82(1); 1-12. doi.org/10.1016/j.solener.2007.06.004.
  • [22] Ji J, Lu JP, Chow TT, He W, Pei G. A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy 2007; 84(2): 222-237. https://doi.org/10.1016/j.apenergy.2006.04.009.
  • [23] Huang B, Lin T, Hung W, Sun F. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy 2001; 70(5): 443-448. https://doi.org/10.1016/S0038-092X(00)00153-5.
  • [24] Pei G, Zhang T, Yu Z, Fu H, Ji J. Comparative study of a novel heat pipe photovoltaic/thermal collector and a water thermosiphon photovoltaic/thermal collector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power Energy 2011; 225(3): 271-278. https://doi.org/10.1177/2041296710394271.
  • [25] Farghally H, Ahmed N, El-Madany H, Atia D, Fahmy F. Design and sensitivity analysis of photovoltaic/thermal solar collector. International Energy Journal 2015; 15(1): 21-32.
  • [26] Ghoneim A, Aljanabi M, Al-Hasan A, Mohammedein A. Thermal and electrical performance of hybrid photovoltaic-thermal collector. International Energy Journal 2009; 10(1): 19-28, 2009.
  • [27] Kline SJ. Describing uncertainties in single-sample experiments. Mechanical Engineering 1963; 75: 3-8.
  • [28] Al-Waeli AH, Sopian K, Chaichan MT, Kazem HA, Hasan HA, Al-Shamani AN. An experimental investigation of sic nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conv. and Manag. 2017; 142: 547-558. https://doi.org/10.1016/j.enconman.2017.03.076.
  • [29] Bhattarai S, Oh JH, Euh SH, Kafle GK, Kim DH. Simulation and model validation of sheet and tube type photovoltaic thermal solar system and conventional solar collecting system in transient states. Solar Energy Materials Solar Cells 2012; 103: 184-193. https://doi.org/10.1016/j.solmat.2012.04.017.
  • [30] Sopian K, Al-Waeli AH, Kazem HA. Advanced photovoltaic thermal collectors. Proceedings of The Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 2020; 234(2): 206-213. https://doi.org/10.1177/0954408919869541.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji, Güneş Enerjisi Sistemleri
Bölüm Research Article
Yazarlar

Sinan Dölek 0000-0001-9992-055X

Gökhan Arslan 0000-0002-2611-1740

Proje Numarası 2022-2-TP3-4727
Yayımlanma Tarihi 22 Mart 2024
Gönderilme Tarihi 29 Aralık 2023
Kabul Tarihi 11 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Dölek, S., & Arslan, G. (2024). Investigation of factors affecting photovoltaic thermal system efficiency. International Journal of Energy Studies, 9(1), 93-113. https://doi.org/10.58559/ijes.1411663
AMA Dölek S, Arslan G. Investigation of factors affecting photovoltaic thermal system efficiency. Int J Energy Studies. Mart 2024;9(1):93-113. doi:10.58559/ijes.1411663
Chicago Dölek, Sinan, ve Gökhan Arslan. “Investigation of Factors Affecting Photovoltaic Thermal System Efficiency”. International Journal of Energy Studies 9, sy. 1 (Mart 2024): 93-113. https://doi.org/10.58559/ijes.1411663.
EndNote Dölek S, Arslan G (01 Mart 2024) Investigation of factors affecting photovoltaic thermal system efficiency. International Journal of Energy Studies 9 1 93–113.
IEEE S. Dölek ve G. Arslan, “Investigation of factors affecting photovoltaic thermal system efficiency”, Int J Energy Studies, c. 9, sy. 1, ss. 93–113, 2024, doi: 10.58559/ijes.1411663.
ISNAD Dölek, Sinan - Arslan, Gökhan. “Investigation of Factors Affecting Photovoltaic Thermal System Efficiency”. International Journal of Energy Studies 9/1 (Mart 2024), 93-113. https://doi.org/10.58559/ijes.1411663.
JAMA Dölek S, Arslan G. Investigation of factors affecting photovoltaic thermal system efficiency. Int J Energy Studies. 2024;9:93–113.
MLA Dölek, Sinan ve Gökhan Arslan. “Investigation of Factors Affecting Photovoltaic Thermal System Efficiency”. International Journal of Energy Studies, c. 9, sy. 1, 2024, ss. 93-113, doi:10.58559/ijes.1411663.
Vancouver Dölek S, Arslan G. Investigation of factors affecting photovoltaic thermal system efficiency. Int J Energy Studies. 2024;9(1):93-113.