Araştırma Makalesi
BibTex RIS Kaynak Göster

Hybrid axis wind turbine profile design

Yıl 2024, , 1 - 19, 22.03.2024
https://doi.org/10.58559/ijes.1416589

Öz

Wind offers vast opportunities in terms of energy potential. Previous studies have shown that wind power can meet all the world's energy needs by using effective wind turbines. However, the efficiency of wind turbines is not at the expected level, and they are not widely used due to various reasons. In this sense, it is substantial to yield airfoils with better aerodynamic properties. Geometrically, wind turbines are divided into two types as horizontal and vertical axes. Within the scope of this study, it was aimed to design a modified airfoil including both horizontal and vertical axes properties. Accordingly, a hybrid design was made in terms of the airfoil axis obtained by the modification of the NACA4412 profile. In terms of the method of the study, the electric generation efficiency of hybrid airfoils with different inclinations was measured under constant distance and air flow. As a result of the study, it was attained that the modified airfoil curved at an angle of 30° was about 12% more efficient in terms of electricity generation than the unmodified one.

Etik Beyan

The author of the paper submitted declares that nothing that is necessary for achieving the paper requires ethical committee and/or legal-special permissions.

Destekleyen Kurum

Nothing

Teşekkür

Thanks for the Kastamonu Science and Art Center

Kaynakça

  • [1] Vardar A, Çetin B. Assessment of the possibility of using three types of wind turbine in Turkey, Energy Exploration & Exploitation 2009; 25(1):71-82.
  • [2] Castro C. Mediavilla M, Miguel LJ, Frechoso F. Global wind power potential: Physical and technological limits. Energy Policy 2011; 39:6677-6682.
  • [3] Toprak A. Elektrik üretimi için düşük güçlü rüzgâr enerji sistemi tasarımı, Master thesis Selçuk University, 2011.
  • [4]World Wind Energy Association World wind energy report 2023. https://www.wwindea.org/wpcontent/uploads/filebase/market_reports/Wind_Energy_Insallations_2022.pdf. (Access date: December 17, 2023).
  • [5] Eriksson S, Bernhoff H, Leijon M. Evaluation of different turbine concepts for wind power. Renewable & Sustainable Energy Reviews 2008; 12:1419-1434.
  • [6] Elibüyük U, Üçgül İ. Rüzgâr türbinleri, çeşitleri ve rüzgâr enerjisi depolama yöntemleri. Journal of YEKARUM 2014; 2(3).
  • [7] Çetin S, Genç M, Daldaban F. Dikey eksenli rüzgâr türbinleri-küçük ölçekli uygulamalar. BSEU Journal of Science 2019; 6(2): 539-551.
  • [8] Tabatabaeikia S, Ghazali, NN, Chong WT, Shahizare B, Izadyar N, Esmaeilzadeh A, Fazlizan A. Computational and experimental optimization of the exhaust air energy recovery wind turbine generator. Energy Conversion and Management 2016; 126:862-874.
  • [9] Burton T, Sharpe D, Bossanyi EA, Jenkins N. Wind Energy Handbook. 3rd ed., John Wiley & Sons Ltd., 2001; 43-45.
  • [10] Şenel M, Koç E. Kanat tasarım parametrelerinin rüzgâr türbini aerodinamik performansına etkisi. V. Ulusal Havacılık ve Uzay Konferansı 2014; 8-10 September, Kayseri.
  • [11] Sheikh HM, Lee S, Wang J, Marcus PS. Airfoil optimization using design-by morphing. ArXiv, (2022); abs/2207.11448
  • [12] Li J, Zhang M, Tay CM, Liu N, Cui Y, Chye Chew S, Khoo BC. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes. Aerospace Science and Technology 2021.
  • [13] Liu J, Chen R, Lou J, Hu Y,You Y. Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall, Aerospace Science and Technology 2023; 133: 108089.
  • [14] Yang S, Lee S, Yee K. Inverse design optimization framework via a two-step deep learning approach: application to a wind turbine airfoil. Engineering with Computers 2023; 39: 2239–2255.
  • [15] Martins JR. Aerodynamic design optimization: Challenges and perspectives. Computers & Fluids 2022.
  • [16] Marimuthu SB, Al-Rabeei SA, Boha HA. Three-dimensional analysis of biomimetic aerofoil in transonic flow. Biomimetics 2022; 7.
  • [17] Righi M, Anderegg DP, Manfriani L, Ammann M, Oram C, Yildirim A, Martins JR, Coretti O. Optimisation of symmetrical aerofoils for a vertical axis wind turbine. AIAA AVIATION 2022; Forum.
  • [18] Langtry RB, Menter FR. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 2009;47(12):2894-906.
  • [19] Atlıhan AB. Rüzgâr enerjisi ve Darrieus rüzgâr çarklarının incelenmesi. Master Thesis, Pamukkale University, 2006.
  • [20] Fidan Ş. Değişken hızlı- değişken kanat açılı rüzgâr türbinlerinin tork ve kanat açısı kontrolü. Master Thesis, Afyon Kocatepe University, 2010.
  • [21] Goudarzi N, Zhu WD. A review on the development of wind turbine generators across the world. International Journal of Dynamics and Control 2013; 1:192-202.
  • [22] Hansen AD, Iov F, Blaabjerg F, Hansen LH. Review of contemporary wind turbine concepts and their market penetration. Wind Engineering 2004; 28:247-263.
  • [23] Rehman S, Alam MM, Alhems LM, Rafique MM. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A Review. Energies 2018; 11:506.
  • [24] Saad MM, Asmuin N. Comparison of horizontal axis wind turbines and vertical axis wind turbines. IOSR Journal of Engineering 2014; 4:27-30.
  • [25] Fadaei S, Langlois F, Afagh FF. Aerodynamic properties identification for small-size wind turbine blade airfoil sections using the cfd method. Proceedings of the 10th International Conference on Control, Dynamic Systems, and Robotics (CDSR 2023).
  • [26] https://www.turbosquid.com/Search/3D-Models/free/wind-turbine. (Access date: September, 2023).
  • [27] Kaya K, Koç E. Yatay eksenli rüzgâr türbinlerinde kanat profil tasarımı ve üretim esasları, Mühendis ve Makina 2015; 56(670):38-48.
  • [28] http://airfoiltools.com/airfoil/details?airfoil=naca4412-il. Airfoil tools: NACA4412-il. (Access date: November, 2023).
  • [29] Ackermann T. Wind Power in Power Systems. Wind Engineering. John Wiley & Sons Ltd; 2005. ISBN 0-470- 85508-8
Yıl 2024, , 1 - 19, 22.03.2024
https://doi.org/10.58559/ijes.1416589

Öz

Kaynakça

  • [1] Vardar A, Çetin B. Assessment of the possibility of using three types of wind turbine in Turkey, Energy Exploration & Exploitation 2009; 25(1):71-82.
  • [2] Castro C. Mediavilla M, Miguel LJ, Frechoso F. Global wind power potential: Physical and technological limits. Energy Policy 2011; 39:6677-6682.
  • [3] Toprak A. Elektrik üretimi için düşük güçlü rüzgâr enerji sistemi tasarımı, Master thesis Selçuk University, 2011.
  • [4]World Wind Energy Association World wind energy report 2023. https://www.wwindea.org/wpcontent/uploads/filebase/market_reports/Wind_Energy_Insallations_2022.pdf. (Access date: December 17, 2023).
  • [5] Eriksson S, Bernhoff H, Leijon M. Evaluation of different turbine concepts for wind power. Renewable & Sustainable Energy Reviews 2008; 12:1419-1434.
  • [6] Elibüyük U, Üçgül İ. Rüzgâr türbinleri, çeşitleri ve rüzgâr enerjisi depolama yöntemleri. Journal of YEKARUM 2014; 2(3).
  • [7] Çetin S, Genç M, Daldaban F. Dikey eksenli rüzgâr türbinleri-küçük ölçekli uygulamalar. BSEU Journal of Science 2019; 6(2): 539-551.
  • [8] Tabatabaeikia S, Ghazali, NN, Chong WT, Shahizare B, Izadyar N, Esmaeilzadeh A, Fazlizan A. Computational and experimental optimization of the exhaust air energy recovery wind turbine generator. Energy Conversion and Management 2016; 126:862-874.
  • [9] Burton T, Sharpe D, Bossanyi EA, Jenkins N. Wind Energy Handbook. 3rd ed., John Wiley & Sons Ltd., 2001; 43-45.
  • [10] Şenel M, Koç E. Kanat tasarım parametrelerinin rüzgâr türbini aerodinamik performansına etkisi. V. Ulusal Havacılık ve Uzay Konferansı 2014; 8-10 September, Kayseri.
  • [11] Sheikh HM, Lee S, Wang J, Marcus PS. Airfoil optimization using design-by morphing. ArXiv, (2022); abs/2207.11448
  • [12] Li J, Zhang M, Tay CM, Liu N, Cui Y, Chye Chew S, Khoo BC. Low-Reynolds-number airfoil design optimization using deep-learning-based tailored airfoil modes. Aerospace Science and Technology 2021.
  • [13] Liu J, Chen R, Lou J, Hu Y,You Y. Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall, Aerospace Science and Technology 2023; 133: 108089.
  • [14] Yang S, Lee S, Yee K. Inverse design optimization framework via a two-step deep learning approach: application to a wind turbine airfoil. Engineering with Computers 2023; 39: 2239–2255.
  • [15] Martins JR. Aerodynamic design optimization: Challenges and perspectives. Computers & Fluids 2022.
  • [16] Marimuthu SB, Al-Rabeei SA, Boha HA. Three-dimensional analysis of biomimetic aerofoil in transonic flow. Biomimetics 2022; 7.
  • [17] Righi M, Anderegg DP, Manfriani L, Ammann M, Oram C, Yildirim A, Martins JR, Coretti O. Optimisation of symmetrical aerofoils for a vertical axis wind turbine. AIAA AVIATION 2022; Forum.
  • [18] Langtry RB, Menter FR. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J 2009;47(12):2894-906.
  • [19] Atlıhan AB. Rüzgâr enerjisi ve Darrieus rüzgâr çarklarının incelenmesi. Master Thesis, Pamukkale University, 2006.
  • [20] Fidan Ş. Değişken hızlı- değişken kanat açılı rüzgâr türbinlerinin tork ve kanat açısı kontrolü. Master Thesis, Afyon Kocatepe University, 2010.
  • [21] Goudarzi N, Zhu WD. A review on the development of wind turbine generators across the world. International Journal of Dynamics and Control 2013; 1:192-202.
  • [22] Hansen AD, Iov F, Blaabjerg F, Hansen LH. Review of contemporary wind turbine concepts and their market penetration. Wind Engineering 2004; 28:247-263.
  • [23] Rehman S, Alam MM, Alhems LM, Rafique MM. Horizontal axis wind turbine blade design methodologies for efficiency enhancement—A Review. Energies 2018; 11:506.
  • [24] Saad MM, Asmuin N. Comparison of horizontal axis wind turbines and vertical axis wind turbines. IOSR Journal of Engineering 2014; 4:27-30.
  • [25] Fadaei S, Langlois F, Afagh FF. Aerodynamic properties identification for small-size wind turbine blade airfoil sections using the cfd method. Proceedings of the 10th International Conference on Control, Dynamic Systems, and Robotics (CDSR 2023).
  • [26] https://www.turbosquid.com/Search/3D-Models/free/wind-turbine. (Access date: September, 2023).
  • [27] Kaya K, Koç E. Yatay eksenli rüzgâr türbinlerinde kanat profil tasarımı ve üretim esasları, Mühendis ve Makina 2015; 56(670):38-48.
  • [28] http://airfoiltools.com/airfoil/details?airfoil=naca4412-il. Airfoil tools: NACA4412-il. (Access date: November, 2023).
  • [29] Ackermann T. Wind Power in Power Systems. Wind Engineering. John Wiley & Sons Ltd; 2005. ISBN 0-470- 85508-8
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Rüzgar Enerjisi Sistemleri
Bölüm Research Article
Yazarlar

Çağatay Paçacı 0000-0002-5093-3568

Yayımlanma Tarihi 22 Mart 2024
Gönderilme Tarihi 8 Ocak 2024
Kabul Tarihi 13 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Paçacı, Ç. (2024). Hybrid axis wind turbine profile design. International Journal of Energy Studies, 9(1), 1-19. https://doi.org/10.58559/ijes.1416589
AMA Paçacı Ç. Hybrid axis wind turbine profile design. Int J Energy Studies. Mart 2024;9(1):1-19. doi:10.58559/ijes.1416589
Chicago Paçacı, Çağatay. “Hybrid Axis Wind Turbine Profile Design”. International Journal of Energy Studies 9, sy. 1 (Mart 2024): 1-19. https://doi.org/10.58559/ijes.1416589.
EndNote Paçacı Ç (01 Mart 2024) Hybrid axis wind turbine profile design. International Journal of Energy Studies 9 1 1–19.
IEEE Ç. Paçacı, “Hybrid axis wind turbine profile design”, Int J Energy Studies, c. 9, sy. 1, ss. 1–19, 2024, doi: 10.58559/ijes.1416589.
ISNAD Paçacı, Çağatay. “Hybrid Axis Wind Turbine Profile Design”. International Journal of Energy Studies 9/1 (Mart 2024), 1-19. https://doi.org/10.58559/ijes.1416589.
JAMA Paçacı Ç. Hybrid axis wind turbine profile design. Int J Energy Studies. 2024;9:1–19.
MLA Paçacı, Çağatay. “Hybrid Axis Wind Turbine Profile Design”. International Journal of Energy Studies, c. 9, sy. 1, 2024, ss. 1-19, doi:10.58559/ijes.1416589.
Vancouver Paçacı Ç. Hybrid axis wind turbine profile design. Int J Energy Studies. 2024;9(1):1-19.