Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques

Yıl 2020, Cilt: 5 Sayı: 1, 13 - 41, 24.06.2020

Öz

In this study, flame characteristics of 50%CO–50%H2, 80%CH4–10%C2H6–10%N2 and 40%CO–40%H2–20%CO2 blends under different combustion techniques, namely; oxy-fuel combustion, flameless distributed combustion and oxy-flameless distributed combustion, were investigated using ANSYS Fluent CFD code. Such combustion techniques were employed through substituting combustion air with high O2 content (above 21%) O2/CO2 mixture, low O2 content (below 21%) O2/CO2 mixture, and diluting combustion air with 90% N2/10% CO2 mixture to simulate controlled involvement of post combustion gases, respectively. Initially, 2D axisymmetric model of an experimentally tested combustor were utilized to model CH4/air combustion so as to validate applicability of the numerical tool. Later on, premixed combustion of 50%CO–50%H2, 80%CH4–10%C2H6–10%N2 and 40%CO–40%H2–20%CO2 mixtures were simulated at 2 kW thermal load, 0.8 equivalence ratio and 1.0 swirl number to evaluate effects of oxidizing atmosphere on combustion and emission characteristics, and to determine gas composition dependence of studied combustion techniques. Main findings of this study are: regardless of the gas composition and oxidizing atmosphere; temperature, reaction rate and species profiles are similar in trend by indicating gas composition versatility of studied combustion regimes; positive impacts of increased turbulent mixing with O2 dilution dominates reaction rates at and near burner outlet, however O2 enrichment effects overwhelm further downstream.

Teşekkür

The author gratefully acknowledges Erciyes University for the use of ANSYS/Fluent CFD code.

Kaynakça

  • [1] Li, B., Shi, B., Zhao, X., Ma, K., Xie, D., Zhao, D., & Li, J. (2018). Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: Operation limits and combustion instability. Experimental Thermal and Fluid Science, 90, 115-124.
  • [2] Krieger, G. C., Campos, A. P. V., Takehara, M. D. B., Da Cunha, F. A., & Veras, C. G. (2015). Numerical simulation of oxy-fuel combustion for gas turbine applications. Applied Thermal Engineering, 78, 471-481.
  • [3] Stelzner, B., Weis, C., Habisreuther, P., Zarzalis, N., & Trimis, D. (2017). Super-adiabatic flame temperatures in premixed methane flames: A comparison between oxy-fuel and conventional air combustion. Fuel, 201, 148-155.
  • [4] Nemitallah, M. A., & Habib, M. A. (2013). Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Applied Energy, 111, 401-415.
  • [5] Abubakar, Z., Shakeel, M. R., & Mokheimer, E. M. (2018). Experimental and numerical analysis of non-premixed oxy-combustion of hydrogen-enriched propane in a swirl stabilized combustor. Energy, 165, 1401-1414.
  • [6] Zhong, S., Zhang, F., Peng, Z., Bai, F., & Du, Q. (2018). Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion. Fuel, 234, 1044-1054.
  • [7] Guan, Y., Han, Y., Wu, M., Liu, W., Cai, L., Yang, Y., ... & Chen, S. (2018). Simulation study on the carbon capture system applying LNG cold energy to the O2/H2O oxy-fuel combustion. Natural Gas Industry B, 5(3), 270-275.
  • [8] Lee, C. E., Lee, S. R., Han, J. W., & Park, J. (2001). Numerical study on effect of CO2 addition in flame structure and NOx formation of CH4‐air counterflow diffusion flames. International Journal of Energy Research, 25(4), 343-354.
  • [9] Glarborg, P., & Bentzen, L. L. (2007). Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy & Fuels, 22(1), 291-296.
  • [10] Shakeel, M. R., Sanusi, Y. S., & Mokheimer, E. M. (2017). Numerical Modeling of Oxy-Fuel Combustion in a Model Gas Turbine Combustor: Effect of Combustion Chemistry and Radiation Model. Energy Procedia, 142, 1647-1652.
  • [11] Shakeel, M. R., Sanusi, Y. S., & Mokheimer, E. M. (2018). Numerical modeling of oxy-methane combustion in a model gas turbine combustor. Applied energy, 228, 68-81.
  • [12] Imteyaz, B. A., Nemitallah, M. A., Abdelhafez, A. A., & Habib, M. A. (2018). Combustion behavior and stability map of hydrogen-enriched oxy-methane premixed flames in a model gas turbine combustor. International Journal of Hydrogen Energy, 43(34), 16652-16666.
  • [13] Ditaranto, M., & Oppelt, T. (2011). Radiative heat flux characteristics of methane flames in oxy-fuel atmospheres. Experimental Thermal and Fluid Science, 35(7), 1343-1350.
  • [14] Li, Y. H., Chen, G. B., Wu, F. H., Hsieh, H. F., & Chao, Y. C. (2016). Effects of carbon dioxide in oxy-fuel atmosphere on catalytic combustion in a small-scale channel. Energy, 94, 766-774.
  • [15] Fooladgar, E., Tóth, P., & Duwig, C. (2019). Characterization of flameless combustion in a model gas turbine combustor using a novel post-processing tool. Combustion and Flame, 204, 356-367.
  • [16] Khalil, A. E., & Gupta, A. K. (2015). Impact of internal entrainment on high intensity distributed combustion. Applied energy, 156, 241-250.
  • [17] Khalil, A. E., & Gupta, A. K. (2014). Swirling flowfield for colorless distributed combustion. Applied energy, 113, 208-218.
  • [18] Khidr, K. I., Eldrainy, Y. A., & EL-Kassaby, M. M. (2017). Towards lower gas turbine emissions: Flameless distributed combustion. Renewable and Sustainable Energy Reviews, 67, 1237-1266.
  • [19] Khalil, A. E., & Gupta, A. K. (2017). Towards colorless distributed combustion regime. Fuel, 195, 113-122.
  • [20] Karyeyen, S., Feser, J. S., & Gupta, A. K. (2019). Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels. Applied Energy, 251, 113354.
  • [21] Karyeyen, S., & Ilbas, M. (2019). Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation. International Journal of Hydrogen Energy.
  • [22] Karyeyen, S. (2018). Combustion characteristics of a non-premixed methane flame in a generated burner under distributed combustion conditions: A numerical study. Fuel, 230, 163-171.
  • [23] Arghode, V. K., & Gupta, A. K. (2011). Investigation of forward flow distributed combustion for gas turbine application. Applied Energy, 88(1), 29-40.
  • [24] Liu, W., Ouyang, Z., Cao, X., & Na, Y. (2019). The influence of air-stage method on flameless combustion of coal gasification fly ash with coal self-preheating technology. Fuel, 235, 1368-1376.
  • [25] Arghode, V. K., & Gupta, A. K. (2011). Investigation of reverse flow distributed combustion for gas turbine application. Applied Energy, 88(4), 1096-1104.
  • [26] Khalil, A. E., & Gupta, A. K. (2017). The role of CO2 on oxy-colorless distributed combustion. Applied energy, 188, 466-474.
  • [27] Karyeyen, S., Feser, J. S., & Gupta, A. K. (2019). Hydrogen concentration effects on swirl-stabilized oxy-colorless distributed combustion. Fuel, 253, 772-780.
  • [28] Yilmaz, H., & Yilmaz, I. (2019). Effects of synthetic gas constituents on combustion and emission behavior of premixed H2/CO/CO2/CNG mixture flames. Journal of the Energy Institute, 92(4), 1091-1106.
  • [29] Li, J., Chou, S. K., Yang, W. M., & Li, Z. W. (2009). A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature. Chemical engineering journal, 150(1), 213-222.
  • [30] Fluent, A., 2009. “12.0 Theory Guide”. Ansys Inc, 5(5).
  • [31] Gaikwad, P., Kulkarni, H., Sreedhara, S., 2017. “Simplified Numerical Modelling of Oxy-Fuel Combustion of Pulverized Coal in a Swirl Burner”, Applied Thermal Engineering, 124, 734-745.
  • [32] Escue, A., & Cui, J. (2010). Comparison of turbulence models in simulating swirling pipe flows. Applied Mathematical Modelling, 34(10), 2840-2849.
  • [33] Yılmaz, H. (2020). Numerical Investigation of Combustion and Emission Behavior of Shale Gas Mixtures in a Laboratory Scale Combustor. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 1579-1589.
  • [34] Wu, K. K., Chang, Y. C., Chen, C. H., & Chen, Y. D. (2010). High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel, 89(9), 2455-2462.
  • [35] Williams, T. C., Shaddix*, C. R., & Schefer, R. W. (2007). Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combustion Science and Technology, 180(1), 64-88.
  • [36] Feser, J. S., Karyeyen, S., & Gupta, A. K. (2019). Flowfield impact on distributed combustion in a swirl assisted burner. Fuel, 116643.
  • [37] Khalil, A. E., & Gupta, A. K. (2016). Fuel property effects on distributed combustion. Fuel, 171, 116-124.
  • [38] Li, S., Xu, Y., & Gao, Q. (2019). Measurements and modelling of oxy-fuel coal combustion. Proceedings of the Combustion Institute, 37(3), 2643-2661.
Yıl 2020, Cilt: 5 Sayı: 1, 13 - 41, 24.06.2020

Öz

Kaynakça

  • [1] Li, B., Shi, B., Zhao, X., Ma, K., Xie, D., Zhao, D., & Li, J. (2018). Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: Operation limits and combustion instability. Experimental Thermal and Fluid Science, 90, 115-124.
  • [2] Krieger, G. C., Campos, A. P. V., Takehara, M. D. B., Da Cunha, F. A., & Veras, C. G. (2015). Numerical simulation of oxy-fuel combustion for gas turbine applications. Applied Thermal Engineering, 78, 471-481.
  • [3] Stelzner, B., Weis, C., Habisreuther, P., Zarzalis, N., & Trimis, D. (2017). Super-adiabatic flame temperatures in premixed methane flames: A comparison between oxy-fuel and conventional air combustion. Fuel, 201, 148-155.
  • [4] Nemitallah, M. A., & Habib, M. A. (2013). Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor. Applied Energy, 111, 401-415.
  • [5] Abubakar, Z., Shakeel, M. R., & Mokheimer, E. M. (2018). Experimental and numerical analysis of non-premixed oxy-combustion of hydrogen-enriched propane in a swirl stabilized combustor. Energy, 165, 1401-1414.
  • [6] Zhong, S., Zhang, F., Peng, Z., Bai, F., & Du, Q. (2018). Roles of CO2 and H2O in premixed turbulent oxy-fuel combustion. Fuel, 234, 1044-1054.
  • [7] Guan, Y., Han, Y., Wu, M., Liu, W., Cai, L., Yang, Y., ... & Chen, S. (2018). Simulation study on the carbon capture system applying LNG cold energy to the O2/H2O oxy-fuel combustion. Natural Gas Industry B, 5(3), 270-275.
  • [8] Lee, C. E., Lee, S. R., Han, J. W., & Park, J. (2001). Numerical study on effect of CO2 addition in flame structure and NOx formation of CH4‐air counterflow diffusion flames. International Journal of Energy Research, 25(4), 343-354.
  • [9] Glarborg, P., & Bentzen, L. L. (2007). Chemical effects of a high CO2 concentration in oxy-fuel combustion of methane. Energy & Fuels, 22(1), 291-296.
  • [10] Shakeel, M. R., Sanusi, Y. S., & Mokheimer, E. M. (2017). Numerical Modeling of Oxy-Fuel Combustion in a Model Gas Turbine Combustor: Effect of Combustion Chemistry and Radiation Model. Energy Procedia, 142, 1647-1652.
  • [11] Shakeel, M. R., Sanusi, Y. S., & Mokheimer, E. M. (2018). Numerical modeling of oxy-methane combustion in a model gas turbine combustor. Applied energy, 228, 68-81.
  • [12] Imteyaz, B. A., Nemitallah, M. A., Abdelhafez, A. A., & Habib, M. A. (2018). Combustion behavior and stability map of hydrogen-enriched oxy-methane premixed flames in a model gas turbine combustor. International Journal of Hydrogen Energy, 43(34), 16652-16666.
  • [13] Ditaranto, M., & Oppelt, T. (2011). Radiative heat flux characteristics of methane flames in oxy-fuel atmospheres. Experimental Thermal and Fluid Science, 35(7), 1343-1350.
  • [14] Li, Y. H., Chen, G. B., Wu, F. H., Hsieh, H. F., & Chao, Y. C. (2016). Effects of carbon dioxide in oxy-fuel atmosphere on catalytic combustion in a small-scale channel. Energy, 94, 766-774.
  • [15] Fooladgar, E., Tóth, P., & Duwig, C. (2019). Characterization of flameless combustion in a model gas turbine combustor using a novel post-processing tool. Combustion and Flame, 204, 356-367.
  • [16] Khalil, A. E., & Gupta, A. K. (2015). Impact of internal entrainment on high intensity distributed combustion. Applied energy, 156, 241-250.
  • [17] Khalil, A. E., & Gupta, A. K. (2014). Swirling flowfield for colorless distributed combustion. Applied energy, 113, 208-218.
  • [18] Khidr, K. I., Eldrainy, Y. A., & EL-Kassaby, M. M. (2017). Towards lower gas turbine emissions: Flameless distributed combustion. Renewable and Sustainable Energy Reviews, 67, 1237-1266.
  • [19] Khalil, A. E., & Gupta, A. K. (2017). Towards colorless distributed combustion regime. Fuel, 195, 113-122.
  • [20] Karyeyen, S., Feser, J. S., & Gupta, A. K. (2019). Swirl assisted distributed combustion behavior using hydrogen-rich gaseous fuels. Applied Energy, 251, 113354.
  • [21] Karyeyen, S., & Ilbas, M. (2019). Application of distributed combustion technique to hydrogen-rich coal gases: A numerical investigation. International Journal of Hydrogen Energy.
  • [22] Karyeyen, S. (2018). Combustion characteristics of a non-premixed methane flame in a generated burner under distributed combustion conditions: A numerical study. Fuel, 230, 163-171.
  • [23] Arghode, V. K., & Gupta, A. K. (2011). Investigation of forward flow distributed combustion for gas turbine application. Applied Energy, 88(1), 29-40.
  • [24] Liu, W., Ouyang, Z., Cao, X., & Na, Y. (2019). The influence of air-stage method on flameless combustion of coal gasification fly ash with coal self-preheating technology. Fuel, 235, 1368-1376.
  • [25] Arghode, V. K., & Gupta, A. K. (2011). Investigation of reverse flow distributed combustion for gas turbine application. Applied Energy, 88(4), 1096-1104.
  • [26] Khalil, A. E., & Gupta, A. K. (2017). The role of CO2 on oxy-colorless distributed combustion. Applied energy, 188, 466-474.
  • [27] Karyeyen, S., Feser, J. S., & Gupta, A. K. (2019). Hydrogen concentration effects on swirl-stabilized oxy-colorless distributed combustion. Fuel, 253, 772-780.
  • [28] Yilmaz, H., & Yilmaz, I. (2019). Effects of synthetic gas constituents on combustion and emission behavior of premixed H2/CO/CO2/CNG mixture flames. Journal of the Energy Institute, 92(4), 1091-1106.
  • [29] Li, J., Chou, S. K., Yang, W. M., & Li, Z. W. (2009). A numerical study on premixed micro-combustion of CH4–air mixture: Effects of combustor size, geometry and boundary conditions on flame temperature. Chemical engineering journal, 150(1), 213-222.
  • [30] Fluent, A., 2009. “12.0 Theory Guide”. Ansys Inc, 5(5).
  • [31] Gaikwad, P., Kulkarni, H., Sreedhara, S., 2017. “Simplified Numerical Modelling of Oxy-Fuel Combustion of Pulverized Coal in a Swirl Burner”, Applied Thermal Engineering, 124, 734-745.
  • [32] Escue, A., & Cui, J. (2010). Comparison of turbulence models in simulating swirling pipe flows. Applied Mathematical Modelling, 34(10), 2840-2849.
  • [33] Yılmaz, H. (2020). Numerical Investigation of Combustion and Emission Behavior of Shale Gas Mixtures in a Laboratory Scale Combustor. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 12(3), 1579-1589.
  • [34] Wu, K. K., Chang, Y. C., Chen, C. H., & Chen, Y. D. (2010). High-efficiency combustion of natural gas with 21–30% oxygen-enriched air. Fuel, 89(9), 2455-2462.
  • [35] Williams, T. C., Shaddix*, C. R., & Schefer, R. W. (2007). Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combustion Science and Technology, 180(1), 64-88.
  • [36] Feser, J. S., Karyeyen, S., & Gupta, A. K. (2019). Flowfield impact on distributed combustion in a swirl assisted burner. Fuel, 116643.
  • [37] Khalil, A. E., & Gupta, A. K. (2016). Fuel property effects on distributed combustion. Fuel, 171, 116-124.
  • [38] Li, S., Xu, Y., & Gao, Q. (2019). Measurements and modelling of oxy-fuel coal combustion. Proceedings of the Combustion Institute, 37(3), 2643-2661.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Research Article
Yazarlar

Harun Yılmaz 0000-0003-1657-4079

Yayımlanma Tarihi 24 Haziran 2020
Gönderilme Tarihi 5 Haziran 2020
Kabul Tarihi 16 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 5 Sayı: 1

Kaynak Göster

APA Yılmaz, H. (2020). Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques. International Journal of Energy Studies, 5(1), 13-41.
AMA Yılmaz H. Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques. Int J Energy Studies. Haziran 2020;5(1):13-41.
Chicago Yılmaz, Harun. “Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques”. International Journal of Energy Studies 5, sy. 1 (Haziran 2020): 13-41.
EndNote Yılmaz H (01 Haziran 2020) Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques. International Journal of Energy Studies 5 1 13–41.
IEEE H. Yılmaz, “Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques”, Int J Energy Studies, c. 5, sy. 1, ss. 13–41, 2020.
ISNAD Yılmaz, Harun. “Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques”. International Journal of Energy Studies 5/1 (Haziran 2020), 13-41.
JAMA Yılmaz H. Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques. Int J Energy Studies. 2020;5:13–41.
MLA Yılmaz, Harun. “Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques”. International Journal of Energy Studies, c. 5, sy. 1, 2020, ss. 13-41.
Vancouver Yılmaz H. Assessment of Combustion and Emission Characteristics of Various Gas Mixtures under Different Combustion Techniques. Int J Energy Studies. 2020;5(1):13-41.