Araştırma Makalesi
BibTex RIS Kaynak Göster

Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach

Yıl 2025, Cilt: 10 Sayı: 1, 1125 - 1158, 18.03.2025
https://doi.org/10.58559/ijes.1613647

Öz

The rapid growth of population and industrial development worldwide has significantly increased energy demand. With the limitations and environmental impacts of conventional energy resources, renewable energy sources are essential for sustainable development. This study presents a renewable hybrid energy system designed to meet a city's electricity needs while generating green hydrogen for hydrogen-powered vehicles, a rising trend in transportation. The goal is to create a self-sufficient and environmentally friendly smart city. The proposed system integrates photovoltaic panels, wind turbines and a biomass generator, supported by lithium-ion batteries for energy storage and green hydrogen generation. Optimized through numerical analysis of experimental load data, the system is designed to handle an average annual electrical load of 14,946,686.40 kWh and produce 58.5 kg of hydrogen daily. A total of 14,550 simulations were conducted, yielding a levelized cost of electricity (LCOE) of $0.3959/kWh. The system is projected to reduce 9,398 tons of CO2 emissions annually. Additionally, the use of 150 hydrogen-powered vehicles in the smart city is estimated to prevent further emissions of 325,215 tons/year, 295,650 tons/year, and 204,491 tons/year under different scenarios. This research highlights the transformative potential of hybrid renewable energy systems and hydrogen-powered vehicles for urban sustainability. By substantially reducing carbon emissions, it supports the development of greener, smarter cities and opens avenues for future innovations in renewable energy integration and sustainable urban planning.

Teşekkür

The authors would like to express their gratitude to the editors and anonymous reviewers for their valuable suggestions that helped improve the paper.

Kaynakça

  • [1] Gupta J, Nijhawan P, Ganguli S. Optimal sizing of different configuration of photovoltaic, fuel cell, and biomass-based hybrid energy system. Environmental Science and Pollution Research 2022; 29(12):17425-17440.
  • [2] Du W, Wang J, Feng Y, Duan W, Wang Z, Chen Y, Zhang P, Pan B. Biomass as residential energy in China: Current status and future perspectives. Renewable and Sustainable Energy Reviews 2023; 186; 113657.
  • [3] Shamsi M, Moghaddas S, Naeiji E , Farokhi S. Techno-economic, energy, exergy, and environmental comparison of hydrogen production from natural gas, biogas, and their combination as feedstock. Arabian Journal for Science and Engineering 2023; 48(7): 8971- 8987.
  • [4] Roy R, Debnath D, Ray S. Comprehensive assessment of various lignocellulosic biomasses for energy recovery in a hybrid energy system. Arabian Journal for Science and Engineering 2022; 47(5): 5935-5948.
  • [5] Dinçer F. Overview of the photovoltaic technology status and perspective in Turkey. Renewable and Sustainable Energy Reviews 2011; 15(8):3768-3779.
  • [6] EPA. 2024. Sources of Greenhouse Gas Emissions. [Online] Available: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (Accessed: 21.02.2024).
  • [7] Ikram AI, Shafiullah M, Islam MR, Rocky MK. Techno-economic assessment and environmental impact analysis of hybrid storage system integrated microgrid. Arabian Journal for Science and Engineering 2024; 1-18.
  • [8] Yilmaz S, Dincer F. Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews 2017; 77: 344-352.
  • [9] Ahmad J, Imran M, Khalid A, Iqbal W, Ashraf SR, Adnan M, Ali SF, Khokhar KS. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy 2018; 148: 208-234.
  • [10] Aykut E, Terzi, ÜK. Techno-economic and environmental analysis of grid connected hybrid wind/photovoltaic/biomass system for Marmara University Goztepe campus. International journal of green energy 2020; 17(15): 1036-1043.
  • [11] Ennemiri N, Berrada A, Emrani A, Abdelmajid J, El Mrabet R. Optimization of an offgrid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco. Energy Conversion and Management: X 2024; 21: 100508.
  • [12] Li J, Liu P, Li Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 2020; 208: 118387.
  • [13] Shahzad MK, Zahid A, ur Rashid T, Rehan MA, Ali M, Ahmad M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable energy 2017; 106: 264-273.
  • [14] Babatunde O, Denwigwe I, Oyebode O, Ighravwe D, Ohiaeri A, Babatunde D. Assessing the use of hybrid renewable energy system with battery storage for power generation in a University in Nigeria. Environmental Science and Pollution Research 2022; 29(3): 4291-4310.
  • [15] Shrivastava A, Doda DK, Bundele M. Economic and environmental impact analyses of hybrid generation system in respect to Rajasthan. Environmental Science and Pollution Research 2021; 28(4): 3906-3912.
  • [16] Thirumalai SK, Karthick A, Dhal PK, Pundir S. Photovoltaic-wind-battery and diesel generator-based hybrid energy system for residential buildings in smart city Coimbatore. Environmental Science and Pollution Research 2024; 31(9):14229-14238.
  • [17] Turkdogan S. Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, an International Journal 2021; 24(2): 397-404.
  • [18] Gökçek M, Kale C. Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system. Energy Conversion and Management 2018; 161: 215-224.
  • [19] Temiz M, Javani N. Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production. International Journal of Hydrogen Energy 2020; 45(5): 3457-3469.
  • [20] Kalinci Y. Alternative energy scenarios for Bozcaada island, Turkey. Renewable and Sustainable Energy Reviews 2015; 45: 468-480.
  • [21] Hasan T, Emami K, Shah R, Hassan N, Belokoskov V, Ly M. Techno-economic Assessment of a Hydrogen-based Islanded Microgrid in North-east. Energy Reports 2023; 9: 3380-3396.
  • [22] Dincer F, Ozer E. Assessing the potential of a rooftop grid-connected photovoltaic system for Gaziantep Islamic Science and Technology University/Turkey. Jordan Journal of Electrical Engineering 2023; 9(2):149-165.
  • [23] Yilmaz S, Ozcalik HR, Kesler S, Dincer F, Yelmen B. The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey. Renewable and Sustainable Energy Reviews 2015; 52: 1015-1024.
  • [24] Turkish Statistical Institute. 2024. Turkiye Address-Based Population Registration System Results. [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-NufusKayit-Sistemi- Sonuclari-2023-49684 (Accessed: 22.02.2024).
  • [25] REPA.2024. Wind Energy Potential Atlas. [Online] Available: https://repa.enerji.gov.tr/REPA/ (Accessed: 22.02.2024).
  • [26] GEPA.2024. Solar Energy Potential Atlas. [Online] Available: https://gepa.enerji.gov.tr/MyCalculator/pages/46.aspx (Accessed: 22.02.2024).
  • [27] BEPA.2024. Biomass Energy Potential Atlas. [Online] Available: https://bepa.enerji.gov.tr/ (Accessed: 22.02.2024).
  • [28] EPIAS.2024. [Online] Available: https://www.epias.com.tr/ (Accessed: 22.02.2024).
  • [29] EPIAS TRANSPARENCY PLATFORM. 2024. [Online] Available: https://seffaflik.epias.com.tr/home (Accessed: 22.02.2024).
  • [30] Turkish Statistical Institute. 2024. Distribution of cars registered to the traffic according to fuel type, 2004 – 2023. [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=MotorluKara-Tasitlari-Ekim-2023-49430 (Accessed: 25.02.2024).
  • [31] Turkish Statistical Institute. 2024. Vehicle-kilometer statistics [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=Tasit-kilometre-Istatistikleri-2021-49527 (Accessed: 25.02.2024).
  • [32] H2. LIVE platform. 2024. Toyota MIRAI [Online] Available: https://h2.live/en/fuelcellcars/toyota-mirai/ (Accessed: 25.02.2024).
  • [33] H2. LIVE platform. 2024. Hyundai NEXO [Online] Available: https://h2.live/en/fuelcellcars/hyundai-nexo/ (Accessed: 25.02.2024).
  • [34] H2. LIVE platform. 2024. Hyundai ix35 [Online] Available: https://h2.live/en/fuelcellcars/hyundai-ix35/ (Accessed: 25.02.2024).
  • [35]CPI Inflation Calculator.2024. [Online] Available: https://www.officialdata.org/1859- dollars-in-1860%3famount%3d1(Accessed: 22.01.2025).
  • [36] Rezk H, Alghassab M, Ziedan HA. An optimal sizing of stand-alone hybrid PV-fuel cellbattery to desalinate seawater at saudi NEOM city. Processes 2020; 8(4): 382.
  • [37] Blanco D, Rivera Y, Berna-Escriche C, Muñoz-Cobo JL. Economy decarbonization using green hydrogen and electricity, forecasts and sensitivity analysis for the Canarian Islands in 2040. Journal of Energy Storage 2024; 80: 110232.
  • [38] Ceylan C, Devrim Y. Green hydrogen based off-grid and on-grid hybrid energy systems. International Journal of Hydrogen Energy 2023; 48(99): 39084-39096.
  • [39] Dawood F, Shafiullah G, Anda M. Stand-alone microgrid with 100% renewable energy: A case study with hybrid solar PV-battery-hydrogen. Sustainability 2020; 12(5): 2047.
  • [40] Zhang G, Xiao C, Razmjooy N. Optimal operational strategy of hybrid PV/wind renewable energy system using homer: a case study. International Journal of Ambient Energy 2022; 43(1) :3953-3966.
  • [41] Ayan O, Turkay BE. Techno-Economic comparative analysis of grid-connected and islanded hybrid renewable energy systems in 7 climate regions, Turkey. IEEE Access 2023;11: 48797-48825.
  • [42] Caliskan A, Percin HB. Techno-economic analysis of a campus-based hydrogen-producing hybrid system. International Journal of Hydrogen Energy 2024;75: 428-437.
  • [43] Homer. 2024. Hybrid optimization of multiple energy resources microgrid software. [Online] Available: https://Homerenergy.com/index.html (Accessed: 22.02.2024).
  • [44] Kamal MM, Ashraf I, Fernandez E. Optimal energy management and capacity planning of renewable integrated rural microgrid. Environmental Science and Pollution Research 2023; 30(44): 99176-99197.
  • [45] Ecoscore. 2024. Environmental score for vehicles. [Online] Available: https://ecoscore.be/en/homepage/faq/general-information (Accessed: 22.02.2024).
  • [46] Ministry of Energy and Natural Resources.2024. [Online] Available: https://enerji.gov.tr/bilgi-merkezi-yatirim-destekleri-elektrik-yatirim-rehberi (Accessed: 22.01.2025).
  • [47] Ministry of Energy and Natural Resources.2024. Yenilenebilir Enerji Yatırımları ve Destekleme Mekanizmaları [Online] Available: https://ticaret.gov.tr/data/65dc9d3113b8762768385d66/ETKB%20SKDM%20SunumYenilenebilir%20Enerji_23022024.pdf (Accessed: 22.01.2025).
  • [48] Erdem M, Gürtürk, M. Economic analysis of the impact of Turkey's renewable support mechanism on solar energy investment. Utilities Policy 2025 ; 92, 101862.

Akıllı Şehirler için Karbon Emisyonlarını Azaltmaya Yönelik Hibrit Yenilenebilir Enerji Sistemi ve Yeşil Hidrojen Üretimi Tasarımı

Yıl 2025, Cilt: 10 Sayı: 1, 1125 - 1158, 18.03.2025
https://doi.org/10.58559/ijes.1613647

Öz

Dünya genelinde hızla artan nüfus ve sanayi gelişimi, enerji talebini önemli ölçüde artırmıştır. Konvansiyonel enerji kaynaklarının sınırlamaları ve çevresel etkileri göz önüne alındığında, yenilenebilir enerji kaynakları sürdürülebilir kalkınma için hayati öneme sahiptir. Bu çalışma, bir şehrin elektrik ihtiyacını karşılamanın yanı sıra, ulaşımda yükselen bir trend olan hidrojenle çalışan araçlar için yeşil hidrojen üreten bir yenilenebilir hibrit enerji sistemi sunmaktadır. Amaç, kendi kendine yeten ve çevre dostu bir akıllı şehir oluşturmaktır. Önerilen sistem, fotovoltaik paneller, rüzgar türbinleri ve bir biyokütle jeneratörünü entegre ederken, enerji depolama ve yeşil hidrojen üretimi için lityum-iyon pillerle desteklenmektedir. Deneysel yük verilerinin sayısal analiziyle optimize edilen sistem, yıllık ortalama 14.946.686,40 kWh elektrik yükünü karşılamak ve günlük 58,5 kg hidrojen üretmek üzere tasarlanmıştır. Toplamda 14.550 simülasyon gerçekleştirilmiş ve elektrik seviyelendirilmiş maliyeti (LCOE) 0,3959 $/kWh olarak hesaplanmıştır. Sistem, yıllık 9.398 ton CO2 emisyonunu azaltmayı öngörmektedir. Ayrıca, akıllı şehirde kullanılacak 150 hidrojenle çalışan aracın, farklı senaryolarda sırasıyla 325.215 ton/yıl, 295.650 ton/yıl ve 204.491 ton/yıl ek emisyonu önlemesi beklenmektedir. Bu araştırma, hibrit yenilenebilir enerji sistemlerinin ve hidrojenle çalışan araçların kentsel sürdürülebilirlik için dönüştürücü potansiyelini vurgulamaktadır. Karbon emisyonlarını önemli ölçüde azaltarak daha yeşil ve akıllı şehirlerin gelişimini desteklemekte ve yenilenebilir enerji entegrasyonu ile sürdürülebilir kentsel planlama konularında gelecekteki yeniliklere kapı aralamaktadır.

Teşekkür

Yazarlar, makalenin iyileştirilmesine katkı sağlayan değerli önerileri için editörlere ve anonim hakemlere teşekkürlerini sunarlar.

Kaynakça

  • [1] Gupta J, Nijhawan P, Ganguli S. Optimal sizing of different configuration of photovoltaic, fuel cell, and biomass-based hybrid energy system. Environmental Science and Pollution Research 2022; 29(12):17425-17440.
  • [2] Du W, Wang J, Feng Y, Duan W, Wang Z, Chen Y, Zhang P, Pan B. Biomass as residential energy in China: Current status and future perspectives. Renewable and Sustainable Energy Reviews 2023; 186; 113657.
  • [3] Shamsi M, Moghaddas S, Naeiji E , Farokhi S. Techno-economic, energy, exergy, and environmental comparison of hydrogen production from natural gas, biogas, and their combination as feedstock. Arabian Journal for Science and Engineering 2023; 48(7): 8971- 8987.
  • [4] Roy R, Debnath D, Ray S. Comprehensive assessment of various lignocellulosic biomasses for energy recovery in a hybrid energy system. Arabian Journal for Science and Engineering 2022; 47(5): 5935-5948.
  • [5] Dinçer F. Overview of the photovoltaic technology status and perspective in Turkey. Renewable and Sustainable Energy Reviews 2011; 15(8):3768-3779.
  • [6] EPA. 2024. Sources of Greenhouse Gas Emissions. [Online] Available: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (Accessed: 21.02.2024).
  • [7] Ikram AI, Shafiullah M, Islam MR, Rocky MK. Techno-economic assessment and environmental impact analysis of hybrid storage system integrated microgrid. Arabian Journal for Science and Engineering 2024; 1-18.
  • [8] Yilmaz S, Dincer F. Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey. Renewable and Sustainable Energy Reviews 2017; 77: 344-352.
  • [9] Ahmad J, Imran M, Khalid A, Iqbal W, Ashraf SR, Adnan M, Ali SF, Khokhar KS. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy 2018; 148: 208-234.
  • [10] Aykut E, Terzi, ÜK. Techno-economic and environmental analysis of grid connected hybrid wind/photovoltaic/biomass system for Marmara University Goztepe campus. International journal of green energy 2020; 17(15): 1036-1043.
  • [11] Ennemiri N, Berrada A, Emrani A, Abdelmajid J, El Mrabet R. Optimization of an offgrid PV/biogas/battery hybrid energy system for electrification: A case study in a commercial platform in Morocco. Energy Conversion and Management: X 2024; 21: 100508.
  • [12] Li J, Liu P, Li Z. Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy 2020; 208: 118387.
  • [13] Shahzad MK, Zahid A, ur Rashid T, Rehan MA, Ali M, Ahmad M. Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software. Renewable energy 2017; 106: 264-273.
  • [14] Babatunde O, Denwigwe I, Oyebode O, Ighravwe D, Ohiaeri A, Babatunde D. Assessing the use of hybrid renewable energy system with battery storage for power generation in a University in Nigeria. Environmental Science and Pollution Research 2022; 29(3): 4291-4310.
  • [15] Shrivastava A, Doda DK, Bundele M. Economic and environmental impact analyses of hybrid generation system in respect to Rajasthan. Environmental Science and Pollution Research 2021; 28(4): 3906-3912.
  • [16] Thirumalai SK, Karthick A, Dhal PK, Pundir S. Photovoltaic-wind-battery and diesel generator-based hybrid energy system for residential buildings in smart city Coimbatore. Environmental Science and Pollution Research 2024; 31(9):14229-14238.
  • [17] Turkdogan S. Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Engineering Science and Technology, an International Journal 2021; 24(2): 397-404.
  • [18] Gökçek M, Kale C. Optimal design of a hydrogen refuelling station (HRFS) powered by hybrid power system. Energy Conversion and Management 2018; 161: 215-224.
  • [19] Temiz M, Javani N. Design and analysis of a combined floating photovoltaic system for electricity and hydrogen production. International Journal of Hydrogen Energy 2020; 45(5): 3457-3469.
  • [20] Kalinci Y. Alternative energy scenarios for Bozcaada island, Turkey. Renewable and Sustainable Energy Reviews 2015; 45: 468-480.
  • [21] Hasan T, Emami K, Shah R, Hassan N, Belokoskov V, Ly M. Techno-economic Assessment of a Hydrogen-based Islanded Microgrid in North-east. Energy Reports 2023; 9: 3380-3396.
  • [22] Dincer F, Ozer E. Assessing the potential of a rooftop grid-connected photovoltaic system for Gaziantep Islamic Science and Technology University/Turkey. Jordan Journal of Electrical Engineering 2023; 9(2):149-165.
  • [23] Yilmaz S, Ozcalik HR, Kesler S, Dincer F, Yelmen B. The analysis of different PV power systems for the determination of optimal PV panels and system installation—A case study in Kahramanmaras, Turkey. Renewable and Sustainable Energy Reviews 2015; 52: 1015-1024.
  • [24] Turkish Statistical Institute. 2024. Turkiye Address-Based Population Registration System Results. [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-NufusKayit-Sistemi- Sonuclari-2023-49684 (Accessed: 22.02.2024).
  • [25] REPA.2024. Wind Energy Potential Atlas. [Online] Available: https://repa.enerji.gov.tr/REPA/ (Accessed: 22.02.2024).
  • [26] GEPA.2024. Solar Energy Potential Atlas. [Online] Available: https://gepa.enerji.gov.tr/MyCalculator/pages/46.aspx (Accessed: 22.02.2024).
  • [27] BEPA.2024. Biomass Energy Potential Atlas. [Online] Available: https://bepa.enerji.gov.tr/ (Accessed: 22.02.2024).
  • [28] EPIAS.2024. [Online] Available: https://www.epias.com.tr/ (Accessed: 22.02.2024).
  • [29] EPIAS TRANSPARENCY PLATFORM. 2024. [Online] Available: https://seffaflik.epias.com.tr/home (Accessed: 22.02.2024).
  • [30] Turkish Statistical Institute. 2024. Distribution of cars registered to the traffic according to fuel type, 2004 – 2023. [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=MotorluKara-Tasitlari-Ekim-2023-49430 (Accessed: 25.02.2024).
  • [31] Turkish Statistical Institute. 2024. Vehicle-kilometer statistics [Online] Available: https://data.tuik.gov.tr/Bulten/Index?p=Tasit-kilometre-Istatistikleri-2021-49527 (Accessed: 25.02.2024).
  • [32] H2. LIVE platform. 2024. Toyota MIRAI [Online] Available: https://h2.live/en/fuelcellcars/toyota-mirai/ (Accessed: 25.02.2024).
  • [33] H2. LIVE platform. 2024. Hyundai NEXO [Online] Available: https://h2.live/en/fuelcellcars/hyundai-nexo/ (Accessed: 25.02.2024).
  • [34] H2. LIVE platform. 2024. Hyundai ix35 [Online] Available: https://h2.live/en/fuelcellcars/hyundai-ix35/ (Accessed: 25.02.2024).
  • [35]CPI Inflation Calculator.2024. [Online] Available: https://www.officialdata.org/1859- dollars-in-1860%3famount%3d1(Accessed: 22.01.2025).
  • [36] Rezk H, Alghassab M, Ziedan HA. An optimal sizing of stand-alone hybrid PV-fuel cellbattery to desalinate seawater at saudi NEOM city. Processes 2020; 8(4): 382.
  • [37] Blanco D, Rivera Y, Berna-Escriche C, Muñoz-Cobo JL. Economy decarbonization using green hydrogen and electricity, forecasts and sensitivity analysis for the Canarian Islands in 2040. Journal of Energy Storage 2024; 80: 110232.
  • [38] Ceylan C, Devrim Y. Green hydrogen based off-grid and on-grid hybrid energy systems. International Journal of Hydrogen Energy 2023; 48(99): 39084-39096.
  • [39] Dawood F, Shafiullah G, Anda M. Stand-alone microgrid with 100% renewable energy: A case study with hybrid solar PV-battery-hydrogen. Sustainability 2020; 12(5): 2047.
  • [40] Zhang G, Xiao C, Razmjooy N. Optimal operational strategy of hybrid PV/wind renewable energy system using homer: a case study. International Journal of Ambient Energy 2022; 43(1) :3953-3966.
  • [41] Ayan O, Turkay BE. Techno-Economic comparative analysis of grid-connected and islanded hybrid renewable energy systems in 7 climate regions, Turkey. IEEE Access 2023;11: 48797-48825.
  • [42] Caliskan A, Percin HB. Techno-economic analysis of a campus-based hydrogen-producing hybrid system. International Journal of Hydrogen Energy 2024;75: 428-437.
  • [43] Homer. 2024. Hybrid optimization of multiple energy resources microgrid software. [Online] Available: https://Homerenergy.com/index.html (Accessed: 22.02.2024).
  • [44] Kamal MM, Ashraf I, Fernandez E. Optimal energy management and capacity planning of renewable integrated rural microgrid. Environmental Science and Pollution Research 2023; 30(44): 99176-99197.
  • [45] Ecoscore. 2024. Environmental score for vehicles. [Online] Available: https://ecoscore.be/en/homepage/faq/general-information (Accessed: 22.02.2024).
  • [46] Ministry of Energy and Natural Resources.2024. [Online] Available: https://enerji.gov.tr/bilgi-merkezi-yatirim-destekleri-elektrik-yatirim-rehberi (Accessed: 22.01.2025).
  • [47] Ministry of Energy and Natural Resources.2024. Yenilenebilir Enerji Yatırımları ve Destekleme Mekanizmaları [Online] Available: https://ticaret.gov.tr/data/65dc9d3113b8762768385d66/ETKB%20SKDM%20SunumYenilenebilir%20Enerji_23022024.pdf (Accessed: 22.01.2025).
  • [48] Erdem M, Gürtürk, M. Economic analysis of the impact of Turkey's renewable support mechanism on solar energy investment. Utilities Policy 2025 ; 92, 101862.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Enerjisi Üretimi (Yenilenebilir Kaynaklar Dahil, Fotovoltaikler Hariç)
Bölüm Research Article
Yazarlar

Furkan Dinçer 0000-0001-6787-0850

Emre Özer 0000-0001-5881-2253

Yayımlanma Tarihi 18 Mart 2025
Gönderilme Tarihi 5 Ocak 2025
Kabul Tarihi 2 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 1

Kaynak Göster

APA Dinçer, F., & Özer, E. (2025). Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach. International Journal of Energy Studies, 10(1), 1125-1158. https://doi.org/10.58559/ijes.1613647
AMA Dinçer F, Özer E. Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach. Int J Energy Studies. Mart 2025;10(1):1125-1158. doi:10.58559/ijes.1613647
Chicago Dinçer, Furkan, ve Emre Özer. “Design of a Hybrid Renewable Energy System and Green Hydrogen Production for Smart Cities: A Carbon Emission Reduction Approach”. International Journal of Energy Studies 10, sy. 1 (Mart 2025): 1125-58. https://doi.org/10.58559/ijes.1613647.
EndNote Dinçer F, Özer E (01 Mart 2025) Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach. International Journal of Energy Studies 10 1 1125–1158.
IEEE F. Dinçer ve E. Özer, “Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach”, Int J Energy Studies, c. 10, sy. 1, ss. 1125–1158, 2025, doi: 10.58559/ijes.1613647.
ISNAD Dinçer, Furkan - Özer, Emre. “Design of a Hybrid Renewable Energy System and Green Hydrogen Production for Smart Cities: A Carbon Emission Reduction Approach”. International Journal of Energy Studies 10/1 (Mart 2025), 1125-1158. https://doi.org/10.58559/ijes.1613647.
JAMA Dinçer F, Özer E. Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach. Int J Energy Studies. 2025;10:1125–1158.
MLA Dinçer, Furkan ve Emre Özer. “Design of a Hybrid Renewable Energy System and Green Hydrogen Production for Smart Cities: A Carbon Emission Reduction Approach”. International Journal of Energy Studies, c. 10, sy. 1, 2025, ss. 1125-58, doi:10.58559/ijes.1613647.
Vancouver Dinçer F, Özer E. Design of a hybrid renewable energy system and green hydrogen production for smart cities: A carbon emission reduction approach. Int J Energy Studies. 2025;10(1):1125-58.