Research Article
BibTex RIS Cite

Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri

Year 2024, , 32 - 42, 17.09.2024
https://doi.org/10.19072/ijet.1491930

Abstract

İklim değişimi ve kentleşme hızının artmasıyla birlikte verimli su kullanımının önemi giderek artmaktadır. Günümüzde, yağmursuyu hasadı yapılarak yağmur suyunun tekrar kullanılması ve su temini üzerindeki baskının azaltması hedeflemektedir. Ayrıca, su kaynaklarının korunması amacıyla doğa tabanlı çözüm yöntemlerini içeren Düşük Etkili Kentleşme (DEK) uygulamalarının kullanılması büyük öneme sahiptir. DEK, hidrolojik çevrimi korumak, selin ve yayılı kirlilik kaynaklarının olumsuz etkilerini azaltmak için tasarlanmış bir yağmursuyu yönetimi uygulamasıdır. Bu çalışma kapsamında, Çevre Koruma Kuruluşu Yağmursuyu Yönetim Modeli (EPA SWMM) kullanılarak kentleşme baskısı altında olan İstanbul Esenyurt ilçesinde bulunan bir yerleşim alanının hidrolojik ve hidrolik modeli oluşturulmuştur. Daha sonra, farklı DEK uygulamaları modele entegre edilerek bu uygulamaların yüzeysel akışa ve askıda katı madde (AKM) konsantrasyonuna olan etkisi incelenmiştir. Bu kapsamda, 2, 5, 10, 25, 50 ve 100 yıllık tekerrür aralığına sahip yağışlar ile İSKİ’den temin edilen yağmursuyu drenaj planları modelde kullanılmıştır. Çalışma kapsamında, yağmur varili/tankı (YV), yağmur bahçesi (YB) ve geçirimli kaldırım (GK) DEK uygulamaları, oluşturulan hidrolojik-hidrolik modele dahil edilmiştir. Model sonuçları incelendiğinde DEK uygulamalarının pik debiyi ve AKM konsantrasyon değerlerini büyük oranda azalttığı görülmüştür. Yapılan simülasyonlar sonucunda DEK uygulamalarının 2, 5, 10, 25, 50, 100 tekerrür aralıklı yağışların oluşturduğu akışın pik değerini sırasıyla, %9.89, %10.46, %9.43, %9.14, %9.34 ve %9.02 ve askıda katı madde maksimum konsantrasyon değerlerini %3.85, %3.25, %3.17, %4.80, %4.64 ve %4.75 oranlarında düşürdüğü gözlemlenmiştir.

References

  • [1] Almeida, C. M. V. B., Borges, D., Jr., Bonilla, S. H., ve Giannetti, B. F, 2010, “Identifying Improvements in Water Management of Buswashing Stations in Brazil.” Resour. Conserv. Recycling, 54(11), 821–831, doi: https://doi.org/10.1016/j.resconrec.2010.01.001
  • [2] Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E., 2009, “Controlling Eutrophication: Nitrogen and Phosphorus”, Science, 323 (5917), 1014–1015, doi: https://doi.org/10.1126/science.1167755
  • [3] Xie, M., He, D., Dong, Z., Cheng, Y., 2024, “Storage Scale Assessment of a Low-Impact Development System in a Sponge City”, Water, 16(10), 77-84, doi: https://doi.org/10.3390/w16101427
  • [4] Gülbaz, S. ve Kazezyilmaz-Alhan, C.M., 2014, “Investigating Effects of Low Impact Development on Surface Runoff and TSS with a Calibrated Hydrodynamic Model”, La Houille Blanche, 100(3), 77-84, doi: https://doi.org/10.1051/lhb/2014031
  • [5] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2012, “Impact of Land Use/Cover Changes on Water Quality and Quantity in a Calibrated Hydrodynamic Model”, 10th International Congress on Advances in Civil Engineering (ACE 2012), Ankara, Türkiye.
  • [6] Jia, H., Yao, H., Tang, Y., Yu, S., Field, R., ve Tafuri, A., 2015, “LID-BMPs Planning For Urban Runoff Control and The Case Study in China”, Journal of Environmental Management, 149, 65-76, doi: https://doi.org/10.1016/j.jenvman.2014.10.003
  • [7] Ekmekçioğlu, Ö., Yılmaz, M., Özger, M., Tosunoğlu, F., 2021, “Investigation of the Low Impact Development Strategies for Highly Urbanized Area via Auto-Calibrated Storm Water Management Model (SWMM)”, Water Science & Technology, 84 (9), 2194, doi: 10.2166/wst.2021.432
  • [8] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system”, Journal of Hydrologic Engineering, 22 (1), D4016003, doi: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001450
  • [9] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Hydrological model of LID with rainfall-watershed-bioretention system”, Water Resources Management, 31, 1931-1946, doi: https://doi.org/10.1007/s11269-017-1622-9
  • [10] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Copty, N.K., 2015, “Evaluation of heavy metal removal capacity of bioretention systems”, Water, Air, & Soil Pollution, 226, article number 376, doi: https://doi.org/10.1007/s11270-015-2640-y
  • [11] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Temür, R., 2019, “Development of an empirical formula for estimation of bioretention outflow rate”, Water Sa, 45 (2), 209-215, doi: https://doi.org/10.4314/wsa.v45i2.07
  • [12] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23 (9), 1041-1048, doi: https://doi.org/10.5505/pajes.2017.54531
  • [13] United States Environmental Protection Agency (USEPA), 2000, “Low Impact Development (LID), A Literature Review”. EPA-841-B-00-005. USEPA Office of Water: Washington, D.C
  • [14] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2018, “Impact of LID implementation on water quality in Alibeyköy watershed in Istanbul, Turkey”, Environmental Processes, 5 (Suppl 1), 201-212, doi: https://doi.org/10.1007/s40710-018-0318-3
  • [15] Gülbaz, S., 2020, “Water quality model for non-point source pollutants incorporating bioretention with EPA SWMM”, Desalination and Water Treatment, 164, 111-120, doi: https://doi.org/10.5004/dwt.2019.24684
  • [16] Gülbaz, S., and Kazezyilmaz Alhan, C.M., Nasirzadehdizaji, R., and Dikici, M., 2017, “A calibrated hydrological model for Alibeyköy Watershed in Istanbul, Turkey incorporating LID implementation”, Fresenius Environ. Bull., 26, 6112–6120.
  • [17] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Kaya, Y., 2018, “Düşük Etkili Kentleşme Uygulamalarının Yüzeysel Akışa Etkisi: İstanbul Üniversitesi Avcılar Kampüsü Örneği”, İklim Değişikliği ve Çevre, 3 (1), 45-50.
  • [18] Zhang, X., Chen, L., Guo, C., Jia, H., ve Shen, Z., 2023, “Two-Scale Optimal Management Of Urban Runoff By Linking Lıds And Landscape Configuration”. Journal of Hydrology, 620, 129332, doi: https://doi.org/10.1016/j.jhydrol.2023.129332
  • [19] Arjenaki, M. O., Sanayei, H. R. Z., Mahabadi, N. A., 2020, “Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (case study: Shahrekord City)”, Modeling Earth Systems and Environment, 7, 1-16, doi: https://doi.org/10.1007/s40808-020-00870-2
  • [20] Bai, Y., Zhao, N., Zhang, R., Zeng, X., 2018, “Storm Water Management of Low Impact Development in Urban Areas Based on SWMM”, Water, 11, doi: https://doi.org//10.3390/w11010033
  • [21] Lee, J. M., Park, M., Min, J-H., Kim, J., Lee, J., Jang, H. ve Na, E. H., 2022, “Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources”, Sustainability 2022, 14, 14662, doi: https://doi.org/10.3390/su142114662
  • [22] Zhu, X., Huang, B., Yao, B., Wang, S., Chen, S., & Zheng, J. (2012). Research for Combined Drainage Networks in Chuanfang river basin of Kunming City based on SWMM. Applied Mechanics and Materials, 170-173, 2380-2385. doi: https://doi.org/10.4028/www.scientific.net/AMM.170-173.2380
  • [23] Mancipe-Munoz N. A., Buchberger, S. G., Suidan M. T., Lu T., 2014, “Calibration of Rainfall-Runoff Model in Urban Watersheds for Stormwater Management Assessment”, Journal of Water Resources Planning and Management, 140(6), doi: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000382
  • [24] Campisano, A., Catania, F. V., ve Modica, C., 2017, “Evaluating the SWMM LID Editor Rain Barrel Option for The Estimation of Retention Potential of Rainwater Harvesting Systems”, Urban Water Journal, 14(8), 876-881. doi: https://doi.org/10.1080/1573062X.2016.1254259
  • [25] Sousa, B.J.D.O., Mattos, T.S., Taffarelo D., Mendiondo E.M., Vasconcelos, J.G., Oliveira, P.T.S., 2024, “Low-Impact Development Scenarios in terms of Construction Costs and Runoff Reduction”, Journal of Hydrologic Engineering, 29(1), 129809, doi: https://doi.org/10.1061/JHYEFF.HEENG-6059
  • [26] Movahedinia, M.,Shahdany, S.M.H., ve Barakhasi, F., 2022, “Integrated Approach for Low Impact Development Locating in Dense Residential Areas Based on Sustainable Development Criteria”, Water Science & Technology, 86(6), 1590, doi: 10.2166/wst.2022.290
  • [27] Zhou, Q., Feng, J., ve Feng, W., 2023, “How Does Flow Connection Path and Vertical Spatial Layout of LIDs Affect Urban Runoff? A New LID Construction Method Based on Refined Landuse and Hydrologic Characterization”, Journal of Hydrology, 623, 129809, doi: https://doi.org/10.1016/j.jhydrol.2023.129809
  • [28] Rossman, L.A., 2010, “Storm Water Management Model, User’s Manual, Version 5”. Water Supply and Water Resources Division National Risk Management Research Laboratory, Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA/600/R-05/040.
  • [29] Huber, W.C. and Dickinson, R. E., 1988, “Storm Water Management Model, Version 4, User’s Manual”. Athens, GA. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA).
  • [30] Ponce, V. M., 1989, “Engineering Hydrology: Principles and Practices”. Prentice-Hall, Englewood Cliffs, N. J.
  • [31] USEPA, 2016, “Storm Water Management Model Reference Manuel, Vol III – Water Quality, EPA/600/R-16/093, National Risk Management Laboratory Office of Research and Development U.S Environmental Protection Agency, Cincinnati, OH.
  • [32] Tu, M. C. ve Smith P., 2018, “Modeling Pollutant Buildup and Washoff Parameters for SWMM based on Land Use in a Semiarid Urban Watershed”, Water,Air & Soil Pollution, Volume 229, 121, https://doi.org/10.1007/s11270-018-3777-2
  • [33] Chow, M. F., Yusop, Z., Toriman, M. E., 2012, “Modelling Runoff Quantity And Quality in Tropical Urban Catchments Using Storm Water Management Model”, International Journal of Environmental Science and Technology, 9, 737–748, doi: https://doi.org/10.1007/s13762-012-0092-0
  • [34] Osheen, Mitthan L.K. & Deepak S.B., 2024, “Enhancing Urban Drainage Infrastructure Through Implementation of Low Impact Development Techniques”, Water Resources Management, doi: https://doi.org/10.1007/s11269-024-03877-x
  • [35] Lee, J.M., Park, M., Min, J.-H., Kim, J., Lee, J., Jang, H., Na, E.H., 2022, “Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources”, Sustainability, 14, 14662, doi: https://doi.org/10.3390/

Impacts of Low Impact Development (LID) Practices on Urban Stormwater Drainage System

Year 2024, , 32 - 42, 17.09.2024
https://doi.org/10.19072/ijet.1491930

Abstract

With climate change and increasing urbanization, efficient water use is becoming increasingly important. Today, rainwater harvesting aims to reuse rainwater and reduce the pressure on the water supply. In addition, Low Impact Development (LID) practices, which include nature-based solutions to conserve water resources, are of great importance. LID is a stormwater management practice designed to protect the hydrological cycle and reduce the negative impacts of flooding and diffuse pollution sources. In this study, the Environmental Protection Agency Stormwater Management Model (EPA SWMM) was used to create a hydrological and hydraulic model of a residential area in Esenyurt district of Istanbul, which is under urbanization pressure. Then, different LID practices were integrated into the model and their effects on runoff and total suspended solids (TSS) concentrations were investigated. In this context, rainfall with 2, 5, 10, 25, 50, and 100-year return periods and stormwater drainage plans obtained from ISKI were used in the model. Within the scope of the study, rain barrel/tank (RB), rain garden (RG), and permeable pavement (PP) LID applications were included in the hydrological-hydraulic model. When the model results were analyzed, it was observed that LID applications significantly reduced the peak flow rate and TSS concentration values. As a result of the simulations, it was observed that LID applications decreased the peak value of runoff generated by rainfall with 2, 5, 10, 25, 50, 100 return periods by 9.89%, 10.46%, 9.43%, 9.14%, 9.34% and 9.02% and the maximum concentration values of suspended solids by 3.85%, 3.25%, 3.17%, 4.80%, 4.64% and 4.75%, respectively.

Thanks

Bu çalışma kapsamında, çalışma alanına ait yağmursuyu drenaj planları İstanbul Su ve Kanalizasyon İdaresi’den (İSKİ) temin edilmiştir. Ayrıca Meteoroloji Genel Müdürlüğü’nden (MGM) alınan 5, 10, 25, 50 ve 100 yıllık tekerrür aralığına sahip yağışlar kullanılmıştır. Katkılarından dolayı İSKİ’ye ve MGM’ye teşekkür ederiz.

References

  • [1] Almeida, C. M. V. B., Borges, D., Jr., Bonilla, S. H., ve Giannetti, B. F, 2010, “Identifying Improvements in Water Management of Buswashing Stations in Brazil.” Resour. Conserv. Recycling, 54(11), 821–831, doi: https://doi.org/10.1016/j.resconrec.2010.01.001
  • [2] Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., Lancelot, C., Likens, G.E., 2009, “Controlling Eutrophication: Nitrogen and Phosphorus”, Science, 323 (5917), 1014–1015, doi: https://doi.org/10.1126/science.1167755
  • [3] Xie, M., He, D., Dong, Z., Cheng, Y., 2024, “Storage Scale Assessment of a Low-Impact Development System in a Sponge City”, Water, 16(10), 77-84, doi: https://doi.org/10.3390/w16101427
  • [4] Gülbaz, S. ve Kazezyilmaz-Alhan, C.M., 2014, “Investigating Effects of Low Impact Development on Surface Runoff and TSS with a Calibrated Hydrodynamic Model”, La Houille Blanche, 100(3), 77-84, doi: https://doi.org/10.1051/lhb/2014031
  • [5] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2012, “Impact of Land Use/Cover Changes on Water Quality and Quantity in a Calibrated Hydrodynamic Model”, 10th International Congress on Advances in Civil Engineering (ACE 2012), Ankara, Türkiye.
  • [6] Jia, H., Yao, H., Tang, Y., Yu, S., Field, R., ve Tafuri, A., 2015, “LID-BMPs Planning For Urban Runoff Control and The Case Study in China”, Journal of Environmental Management, 149, 65-76, doi: https://doi.org/10.1016/j.jenvman.2014.10.003
  • [7] Ekmekçioğlu, Ö., Yılmaz, M., Özger, M., Tosunoğlu, F., 2021, “Investigation of the Low Impact Development Strategies for Highly Urbanized Area via Auto-Calibrated Storm Water Management Model (SWMM)”, Water Science & Technology, 84 (9), 2194, doi: 10.2166/wst.2021.432
  • [8] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Experimental investigation on hydrologic performance of LID with rainfall-watershed-bioretention system”, Journal of Hydrologic Engineering, 22 (1), D4016003, doi: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001450
  • [9] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Hydrological model of LID with rainfall-watershed-bioretention system”, Water Resources Management, 31, 1931-1946, doi: https://doi.org/10.1007/s11269-017-1622-9
  • [10] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Copty, N.K., 2015, “Evaluation of heavy metal removal capacity of bioretention systems”, Water, Air, & Soil Pollution, 226, article number 376, doi: https://doi.org/10.1007/s11270-015-2640-y
  • [11] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Temür, R., 2019, “Development of an empirical formula for estimation of bioretention outflow rate”, Water Sa, 45 (2), 209-215, doi: https://doi.org/10.4314/wsa.v45i2.07
  • [12] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2017, “Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23 (9), 1041-1048, doi: https://doi.org/10.5505/pajes.2017.54531
  • [13] United States Environmental Protection Agency (USEPA), 2000, “Low Impact Development (LID), A Literature Review”. EPA-841-B-00-005. USEPA Office of Water: Washington, D.C
  • [14] Gülbaz, S., Kazezyılmaz-Alhan, C.M., 2018, “Impact of LID implementation on water quality in Alibeyköy watershed in Istanbul, Turkey”, Environmental Processes, 5 (Suppl 1), 201-212, doi: https://doi.org/10.1007/s40710-018-0318-3
  • [15] Gülbaz, S., 2020, “Water quality model for non-point source pollutants incorporating bioretention with EPA SWMM”, Desalination and Water Treatment, 164, 111-120, doi: https://doi.org/10.5004/dwt.2019.24684
  • [16] Gülbaz, S., and Kazezyilmaz Alhan, C.M., Nasirzadehdizaji, R., and Dikici, M., 2017, “A calibrated hydrological model for Alibeyköy Watershed in Istanbul, Turkey incorporating LID implementation”, Fresenius Environ. Bull., 26, 6112–6120.
  • [17] Gülbaz, S., Kazezyılmaz-Alhan, C.M., Kaya, Y., 2018, “Düşük Etkili Kentleşme Uygulamalarının Yüzeysel Akışa Etkisi: İstanbul Üniversitesi Avcılar Kampüsü Örneği”, İklim Değişikliği ve Çevre, 3 (1), 45-50.
  • [18] Zhang, X., Chen, L., Guo, C., Jia, H., ve Shen, Z., 2023, “Two-Scale Optimal Management Of Urban Runoff By Linking Lıds And Landscape Configuration”. Journal of Hydrology, 620, 129332, doi: https://doi.org/10.1016/j.jhydrol.2023.129332
  • [19] Arjenaki, M. O., Sanayei, H. R. Z., Mahabadi, N. A., 2020, “Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (case study: Shahrekord City)”, Modeling Earth Systems and Environment, 7, 1-16, doi: https://doi.org/10.1007/s40808-020-00870-2
  • [20] Bai, Y., Zhao, N., Zhang, R., Zeng, X., 2018, “Storm Water Management of Low Impact Development in Urban Areas Based on SWMM”, Water, 11, doi: https://doi.org//10.3390/w11010033
  • [21] Lee, J. M., Park, M., Min, J-H., Kim, J., Lee, J., Jang, H. ve Na, E. H., 2022, “Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources”, Sustainability 2022, 14, 14662, doi: https://doi.org/10.3390/su142114662
  • [22] Zhu, X., Huang, B., Yao, B., Wang, S., Chen, S., & Zheng, J. (2012). Research for Combined Drainage Networks in Chuanfang river basin of Kunming City based on SWMM. Applied Mechanics and Materials, 170-173, 2380-2385. doi: https://doi.org/10.4028/www.scientific.net/AMM.170-173.2380
  • [23] Mancipe-Munoz N. A., Buchberger, S. G., Suidan M. T., Lu T., 2014, “Calibration of Rainfall-Runoff Model in Urban Watersheds for Stormwater Management Assessment”, Journal of Water Resources Planning and Management, 140(6), doi: https://doi.org/10.1061/(ASCE)WR.1943-5452.0000382
  • [24] Campisano, A., Catania, F. V., ve Modica, C., 2017, “Evaluating the SWMM LID Editor Rain Barrel Option for The Estimation of Retention Potential of Rainwater Harvesting Systems”, Urban Water Journal, 14(8), 876-881. doi: https://doi.org/10.1080/1573062X.2016.1254259
  • [25] Sousa, B.J.D.O., Mattos, T.S., Taffarelo D., Mendiondo E.M., Vasconcelos, J.G., Oliveira, P.T.S., 2024, “Low-Impact Development Scenarios in terms of Construction Costs and Runoff Reduction”, Journal of Hydrologic Engineering, 29(1), 129809, doi: https://doi.org/10.1061/JHYEFF.HEENG-6059
  • [26] Movahedinia, M.,Shahdany, S.M.H., ve Barakhasi, F., 2022, “Integrated Approach for Low Impact Development Locating in Dense Residential Areas Based on Sustainable Development Criteria”, Water Science & Technology, 86(6), 1590, doi: 10.2166/wst.2022.290
  • [27] Zhou, Q., Feng, J., ve Feng, W., 2023, “How Does Flow Connection Path and Vertical Spatial Layout of LIDs Affect Urban Runoff? A New LID Construction Method Based on Refined Landuse and Hydrologic Characterization”, Journal of Hydrology, 623, 129809, doi: https://doi.org/10.1016/j.jhydrol.2023.129809
  • [28] Rossman, L.A., 2010, “Storm Water Management Model, User’s Manual, Version 5”. Water Supply and Water Resources Division National Risk Management Research Laboratory, Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA/600/R-05/040.
  • [29] Huber, W.C. and Dickinson, R. E., 1988, “Storm Water Management Model, Version 4, User’s Manual”. Athens, GA. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency (EPA).
  • [30] Ponce, V. M., 1989, “Engineering Hydrology: Principles and Practices”. Prentice-Hall, Englewood Cliffs, N. J.
  • [31] USEPA, 2016, “Storm Water Management Model Reference Manuel, Vol III – Water Quality, EPA/600/R-16/093, National Risk Management Laboratory Office of Research and Development U.S Environmental Protection Agency, Cincinnati, OH.
  • [32] Tu, M. C. ve Smith P., 2018, “Modeling Pollutant Buildup and Washoff Parameters for SWMM based on Land Use in a Semiarid Urban Watershed”, Water,Air & Soil Pollution, Volume 229, 121, https://doi.org/10.1007/s11270-018-3777-2
  • [33] Chow, M. F., Yusop, Z., Toriman, M. E., 2012, “Modelling Runoff Quantity And Quality in Tropical Urban Catchments Using Storm Water Management Model”, International Journal of Environmental Science and Technology, 9, 737–748, doi: https://doi.org/10.1007/s13762-012-0092-0
  • [34] Osheen, Mitthan L.K. & Deepak S.B., 2024, “Enhancing Urban Drainage Infrastructure Through Implementation of Low Impact Development Techniques”, Water Resources Management, doi: https://doi.org/10.1007/s11269-024-03877-x
  • [35] Lee, J.M., Park, M., Min, J.-H., Kim, J., Lee, J., Jang, H., Na, E.H., 2022, “Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources”, Sustainability, 14, 14662, doi: https://doi.org/10.3390/
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Numerical Modelization in Civil Engineering, Water Harvesting, Water Resources Engineering
Journal Section Makaleler
Authors

Abdülbaki Hacı 0000-0003-3409-2209

Sezar Gülbaz 0000-0002-2274-6896

Yasin Paşa 0000-0003-2104-9746

Early Pub Date September 16, 2024
Publication Date September 17, 2024
Submission Date May 29, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2024

Cite

APA Hacı, A., Gülbaz, S., & Paşa, Y. (2024). Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri. International Journal of Engineering Technologies IJET, 9(1), 32-42. https://doi.org/10.19072/ijet.1491930
AMA Hacı A, Gülbaz S, Paşa Y. Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri. IJET. September 2024;9(1):32-42. doi:10.19072/ijet.1491930
Chicago Hacı, Abdülbaki, Sezar Gülbaz, and Yasin Paşa. “Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri”. International Journal of Engineering Technologies IJET 9, no. 1 (September 2024): 32-42. https://doi.org/10.19072/ijet.1491930.
EndNote Hacı A, Gülbaz S, Paşa Y (September 1, 2024) Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri. International Journal of Engineering Technologies IJET 9 1 32–42.
IEEE A. Hacı, S. Gülbaz, and Y. Paşa, “Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri”, IJET, vol. 9, no. 1, pp. 32–42, 2024, doi: 10.19072/ijet.1491930.
ISNAD Hacı, Abdülbaki et al. “Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri”. International Journal of Engineering Technologies IJET 9/1 (September 2024), 32-42. https://doi.org/10.19072/ijet.1491930.
JAMA Hacı A, Gülbaz S, Paşa Y. Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri. IJET. 2024;9:32–42.
MLA Hacı, Abdülbaki et al. “Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri”. International Journal of Engineering Technologies IJET, vol. 9, no. 1, 2024, pp. 32-42, doi:10.19072/ijet.1491930.
Vancouver Hacı A, Gülbaz S, Paşa Y. Düşük Etkili Kentleşme (DEK) Uygulamalarının Kentsel Yağmursuyu Drenaj Sistemi Üzerindeki Etkileri. IJET. 2024;9(1):32-4.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)