Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 10 Sayı: 2, 57 - 70, 08.09.2025
https://doi.org/10.19072/ijet.1706784

Öz

Kaynakça

  • [1] Vinod, B. R., & Swetha, G. A. (2024). A Review of the Effects of Laser Cleaning on the Development of Corrosion and the Removal of Rust in Steel Bridges in Marine Environments. In Laser-Assisted Machining: Processes and Applications (pp. 87–113). wiley. https://doi.org/10.1002/9781394214655.ch7
  • [2] Jing, Z., Xu, Z., Min, Z., Haoyu, Z., Shengrong, Z. (2024). Research on the Technology of Laser Derusting and Design of Portable Laser Derusting System. In: Hung, J.C., Yen, N., Chang, JW. (eds) Frontier Computing on Industrial Applications Volume 3. FC 2023. Lecture Notes in Electrical Engineering, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-99-9416-8_15
  • [3] Liu, Y., Li, C., Feng, L., & Han, X. (2024). Sensitivity analysis of the process parameters of the composite process of submerged arc surfacing and laser cladding. International Journal of Advanced Manufacturing Technology, 133(9–10), 4777–4806. https://doi.org/10.1007/s00170-024-13842-y
  • [4] B. Guan, L. Qin, G. Yang, Y. Ren, X. Wang (2024). Laser Polishing of Directed Energy Deposition Metal Parts: A Review. Additive Manufacturing Frontiers, Volume 3, Issue 4, 200174, ISSN 2950-4317 https://doi.org/10.1016/j.amf.2024.200174
  • [5] E.V. Bordachev, A.M.K. Hafiz, O.R. Tutunea-Fatan, Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73, 35–52, 2014, https://doi.org/10.1007/s00170-014-5761-3
  • [6] Zhu, G., Xu, Z., Jin, Y., Chen, X., Yang, L., Xu, J., Shan, D., Chen, Y., & Guo, B. (2022). Mechanism and application of laser cleaning: A review. In Optics and Lasers in Engineering (Vol. 157). Elsevier Ltd. https://doi.org/10.1016/j.optlaseng.2022.107130
  • [7] Chen, Y., Deng, G., Zhou, Q., & Feng, G. (2020). Acoustic signal monitoring in laser paint cleaning. Laser Physics, 30(6), 066001–066001. https://doi.org/10.1088/1555-6611/ab85c7
  • [8] Y. Cheng, P. Zou, L. Kong, B. Li, Y. Zhang (2025) Research on the effect of ultrasonic vibration-assisted laser polishing (UVLP) on Ti6Al4V surface properties and establishment of roughness prediction model, Optics & Laser Technology, Volume 186, 2025, 112714, ISSN 0030-3992, https://doi.org/10.1016/j.optlastec.2025.112714
  • [9] Lu, Y.-F., Zhang, Y., Song, W.-D., & Daniel. (1998). A Theoretical Model for Laser Cleaning of Microparticles in a Thin Liquid Layer. Japanese Journal of Applied Physics, 37(11A), L1330–L1330. https://doi.org/10.1143/jjap.37.l1330
  • [10] Frank, P., Lang, F., Mosbacher, M., J. Boneberg, & P. Leiderer. (2008). Infrared steam laser cleaning. Applied Physics A, 93(1), 1–4. https://doi.org/10.1007/s00339-008-4651-7
  • [11] Jang, D., Lee, J., Lee, J.-M., & Kim, D. (2008). Visualization of particle trajectories in the laser shock cleaning process. Applied Physics A, 93(1), 147–151. https://doi.org/10.1007/s00339-008-4659-z
  • [12] Alsaadawy, M., Dewidar, M., Said, A., Maher, I., & Shehab Eldeen, T. A. (2024). A comprehensive review of the influence of laser cutting parameters on surface and kerf quality of metals. In International Journal of Advanced Manufacturing Technology (Vol. 130, Issues 3–4, pp. 1039–1074). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-023-12768-1
  • [13] Rajaram, N., Sheikh-Ahmad, J., & S. Hossein Cheraghi. (2003). CO2 laser cut quality of 4130 steel. 43(4), 351–358. https://doi.org/10.1016/s0890-6955(02)00270-5
  • [14] Senthilkumar, V. (2014). Laser Cutting Process – A Review. ResearchGate. https://www.researchgate.net/publication/305385939_Laser_cutting_process_-_A_Review
  • [15] Irsel, G., & Güzey, B. N. (2021). Comparison of laser beam, oxygen, and plasma arc cutting methods in terms of their advantages and disadvantages in cutting structural steels. Journal of Physics: Conference Series, 2130(1). https://doi.org/10.1088/1742-6596/2130/1/012022
  • [16] Dolgova, S., Malikov, A., Golyshev, A., & Nikulina, A. (2024). The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks. Obrabotka Metallov, 26(2), 57–70. https://doi.org/10.17212/1994-6309-2024-26.2-57-70
  • [17] Biryukov, V. (2024). Increasing the wear resistance of agricultural machinery parts by laser surfacing. E3S Web of Conferences, 592. https://doi.org/10.1051/e3sconf/202459205020
  • [18] Caggiano, A., Teti, R., Alfieri, V., & Caiazzo, F. (2021). Automated laser polishing for surface finish enhancement of additive-manufactured components for the automotive industry. Production Engineering, 15(1), 109–117. https://doi.org/10.1007/s11740-020-01007-1
  • [19] W. Wang, P. Zou, J. Xu, K. F. Ehmann (2023) Surface morphology evolution mechanisms of laser polishing in ambient gas, International Journal of Mechanical Sciences, Volume 250, 2023, 108302, ISSN 0020-7403, https://doi.org/10.1016/j.ijmecsci.2023.108302
  • [20] Basha, S. M., Bhuyan, M., Basha, M. M., Venkaiah, N., & Sankar, M. R. (2019). Laser polishing of 3D printed metallic components: A review on surface integrity. Materials Today: Proceedings, 26, 2047–2054. https://doi.org/10.1016/j.matpr.2020.02.443
  • [21] Abhishek Kumar, Harikrishnan Ramadas, Cheruvu Siva Kumar, Ashish Kumar Nath, Laser polishing of additive manufactured stainless-steel parts by line focused beam: A response surface method for improving surface finish, Journal of Manufacturing Processes, Volume 133, 2025, Pages 1310-1328, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2024.12.028
  • [22] Ermergen, T., & Taylan, F. (2021). Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing. In Arabian Journal for Science and Engineering (Vol. 46, Issue 8, pp. 7125–7141). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13369-021-05658-9
  • [23] Haoxiang Lu, Dazhong Wang, Shujing Wu, Zili Pan, Guoqiang Wang, Guoqiang Guo, Yebing Tian, Daohui Xiang, A Review Of Laser Polishing on Ti6Al4V Based On Energy Density, Journal of Materials Processing Technology, Volume 331, 2024, 118520, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2024.118520
  • [24] Jinan, L., Yanhe, S., Yuan, F., Jun, T., Chunyu, F., Hua, Z., & Chengbing, Z. (2020). Mechanism Research and Equipment Development of Laser Cleaning Rust. Journal of Physics: Conference Series, 1453(1). https://doi.org/10.1088/1742-6596/1453/1/012041
  • [25] Narayanan, V., Singh, R., & Marla, D. (2025). Optimization of Nanosecond Pulsed Laser Cleaning of Rust. Lasers in Manufacturing and Materials Processing. https://doi.org/10.1007/s40516-025-00282-z
  • [26] Gisario, A., Barletta, M. & Veniali, F. Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing. Int J Adv Manuf Technol 120, 1433–1472 (2022). https://doi.org/10.1007/s00170-022-08840-x
  • [27] Guan, B., Qin, L., Yang, G., Ren, Y., & Wang, X. (2024). Laser polishing of directed energy deposition metal parts: A review. In Additive Manufacturing Frontiers (Vol. 3, Issue 4). Elsevier B.V. https://doi.org/10.1016/j.amf.2024.200174
  • [28] Zheng, Z., Wang, C., Huang, G., Feng, W., & Liu, D. (2021). Effect of defocused nanosecond laser paint removal on mild steel substrate in the ambient atmosphere. Materials, 14(20). https://doi.org/10.3390/ma14205969
  • [29] Narayanan, V., Singh, R. K., & Marla, D. (2018). Laser cleaning for rust removal on mild steel: An experimental study on surface characteristics. MATEC Web of Conferences, 221. https://doi.org/10.1051/matecconf/201822101007
  • [30] He, Y., Cai, X., & Ye, J. (2023). Research on pulse laser cleaning and rust removal technology in power systems. AIP Advances, 13(9). https://doi.org/10.1063/5.0155263
  • [31] Garcia-Fernandez, J., Salguero, J., Batista, M., Vazquez-Martinez, J. M., & del Sol, I. (2024). Laser Surface Texturing of Cutting Tools for Improving the Machining of Ti6Al4V: A Review. In Metals (Vol. 14, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/met14121422
  • [32] Klich, L., Marciniak, M., & Sikorska-Czupryna, S. (2025). Optimization of the laser cutting process by integrating an automatic storage and loading system with enterprise resource management integration. Advances in Science and Technology Research Journal, 19(4), 365–376. https://doi.org/10.12913/22998624/200725
  • [33] Ni, C., Zhu, J., Zhang, B., An, K., Wang, Y., Liu, D., Lu, W., Zhu, L., & Liu, C. (2025). Recent advances in laser powder bed fusion of Ti–6Al–4V alloys: microstructure, mechanical properties, and machinability. In Virtual and Physical Prototyping (Vol. 20, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/17452759.2024.2446952
  • [34] Wang, G., Deng, J., Lei, J., Tang, W., Zhou, W., & Lei, Z. (2024). Multi-Objective Optimization of Laser Cleaning Quality of Q390 Steel Rust Layer Based on Response Surface Methodology and NSGA-II Algorithm. Materials, 17(13). https://doi.org/10.3390/ma17133109
  • [35] Ngadiono, Y., Saputra, D. A., Setiadi, B. R., & Pardjono, P. (2025). Taguchi’s Method for Optimum Cutting of Acrylic Materials on a 40-Watt CNC Laser Cutting Machine. TEM Journal, 933–939. https://doi.org/10.18421/TEM141-82
  • [36] Naresh, & Khatak, P. (2022). Laser cutting technique: A literature review. Materials for Today: Proceedings, 56, 2484–2489. https://doi.org/10.1016/j.matpr.2021.08.250
  • [37] Krajcar, D. (2014). Comparison of metal water jet cutting with laser and plasma cutting. Procedia Engineering, 69, 838–843. https://doi.org/10.1016/j.proeng.2014.03.061
  • [38] D'aurelio, G., Chita, G., & Cinquepalmi, M. (n.d.). Laser surface cleaning, de-rusting, de-painting, and de-oxidizing. Appl. Phys. A, 69. https://doi.org/10.1007/s003399900373
  • [39] Di Kang, Ping Zou, Hao Wu, Wenjie Wang, Jilin Xu, Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel, Journal of Manufacturing Processes, Volume 62, 2021, Pages 403-417, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.12.009
  • [40] Manco, E., Cozzolino, E., & Astarita, A. (2022). Laser polishing of additively manufactured metal parts: a review. In Surface Engineering (Vol. 38, Issue 3, pp. 217–233). Taylor and Francis Ltd. https://doi.org/10.1080/02670844.2022.2072080
  • [41] Belosludtsev, A., Bitinaitis, I., Baltrušaitis, K., & Rodin, A. M. (n.d.). Investigation of the laser cleaning process for IBS grids in optical coating technology. https://doi.org/10.1007/s00170-021-07035-0/Published
  • [42] Zhang, H., Zhang, J., Zhang, X., Zhu, S., & Zhang, M. (2023). Analysis of Laser Cleaning and Rust Removal Technology for Substation Isolator Switches. Journal of Physics: Conference Series, 2488(1). https://doi.org/10.1088/1742-6596/2488/1/012033
  • [43] Wang, W. (2023). Surface defects detection in metal materials repaired by laser surfacing of seal welds. Journal of Measurements in Engineering, 11(3), 343–357. https://doi.org/10.21595/jme.2023.23316
  • [44] Yue, L., Wang, Z., & Li, L. (2012). Multiphysics modelling and simulation of dry laser cleaning of micro-slots with particle contaminants. Journal of Physics D Applied Physics, 45(13), 135401–135401. https://doi.org/10.1088/0022-3727/45/13/135401

A Systematic Review of Laser Surfacing, Resurfacing, and Cutting

Yıl 2025, Cilt: 10 Sayı: 2, 57 - 70, 08.09.2025
https://doi.org/10.19072/ijet.1706784

Öz

Laser surfacing, resurfacing, and cutting are leading-edge laser machining processes that bring benefits not previously known to the machining industry through state-of-the-art techniques. Laser machining is growing rapidly as the industry adopts additive manufacturing, creating a need for a process review. This study aims to critique the viability of laser surfacing, rust removal, and cutting machine processes in industry. A comprehensive literature review approach was adopted on previous studies on laser machining processes. The study also mirrored the effects of laser machining operations parameters by determining how changing them affects the final product. The results confirmed that laser surfacing can enhance surface finish on both simple and complex geometries for various materials. It was also discovered that thermal expansion and pressure waves can remove unwanted particles such as rust and dirt in the case of laser cleaning. Laser cutting provides a thorough and precise cut with no tool wear. These methods can efficiently and precisely perform across various complex geometries with little waste and no tool wear. Additionally, results show that laser power and scanning speed parameters are the most important laser parameters used in determining the success of a laser machining operation. Hence, the authors emphasized the importance of carefully selecting laser parameters, ensuring they are specifically tailored to the material and condition of the workpiece. They also advocated further research to optimize parameter selection in laser machining processes.

Etik Beyan

The authors express their profound appreciation for this opportunity, your time and effort in reviewing this manuscript well appreciated.

Destekleyen Kurum

Lehigh University

Teşekkür

The authors express their profound appreciation for this opportunity, your time and effort in reviewing this manuscript well appreciated.

Kaynakça

  • [1] Vinod, B. R., & Swetha, G. A. (2024). A Review of the Effects of Laser Cleaning on the Development of Corrosion and the Removal of Rust in Steel Bridges in Marine Environments. In Laser-Assisted Machining: Processes and Applications (pp. 87–113). wiley. https://doi.org/10.1002/9781394214655.ch7
  • [2] Jing, Z., Xu, Z., Min, Z., Haoyu, Z., Shengrong, Z. (2024). Research on the Technology of Laser Derusting and Design of Portable Laser Derusting System. In: Hung, J.C., Yen, N., Chang, JW. (eds) Frontier Computing on Industrial Applications Volume 3. FC 2023. Lecture Notes in Electrical Engineering, vol 1133. Springer, Singapore. https://doi.org/10.1007/978-981-99-9416-8_15
  • [3] Liu, Y., Li, C., Feng, L., & Han, X. (2024). Sensitivity analysis of the process parameters of the composite process of submerged arc surfacing and laser cladding. International Journal of Advanced Manufacturing Technology, 133(9–10), 4777–4806. https://doi.org/10.1007/s00170-024-13842-y
  • [4] B. Guan, L. Qin, G. Yang, Y. Ren, X. Wang (2024). Laser Polishing of Directed Energy Deposition Metal Parts: A Review. Additive Manufacturing Frontiers, Volume 3, Issue 4, 200174, ISSN 2950-4317 https://doi.org/10.1016/j.amf.2024.200174
  • [5] E.V. Bordachev, A.M.K. Hafiz, O.R. Tutunea-Fatan, Performance of laser polishing in finishing of metallic surfaces. Int J Adv Manuf Technol 73, 35–52, 2014, https://doi.org/10.1007/s00170-014-5761-3
  • [6] Zhu, G., Xu, Z., Jin, Y., Chen, X., Yang, L., Xu, J., Shan, D., Chen, Y., & Guo, B. (2022). Mechanism and application of laser cleaning: A review. In Optics and Lasers in Engineering (Vol. 157). Elsevier Ltd. https://doi.org/10.1016/j.optlaseng.2022.107130
  • [7] Chen, Y., Deng, G., Zhou, Q., & Feng, G. (2020). Acoustic signal monitoring in laser paint cleaning. Laser Physics, 30(6), 066001–066001. https://doi.org/10.1088/1555-6611/ab85c7
  • [8] Y. Cheng, P. Zou, L. Kong, B. Li, Y. Zhang (2025) Research on the effect of ultrasonic vibration-assisted laser polishing (UVLP) on Ti6Al4V surface properties and establishment of roughness prediction model, Optics & Laser Technology, Volume 186, 2025, 112714, ISSN 0030-3992, https://doi.org/10.1016/j.optlastec.2025.112714
  • [9] Lu, Y.-F., Zhang, Y., Song, W.-D., & Daniel. (1998). A Theoretical Model for Laser Cleaning of Microparticles in a Thin Liquid Layer. Japanese Journal of Applied Physics, 37(11A), L1330–L1330. https://doi.org/10.1143/jjap.37.l1330
  • [10] Frank, P., Lang, F., Mosbacher, M., J. Boneberg, & P. Leiderer. (2008). Infrared steam laser cleaning. Applied Physics A, 93(1), 1–4. https://doi.org/10.1007/s00339-008-4651-7
  • [11] Jang, D., Lee, J., Lee, J.-M., & Kim, D. (2008). Visualization of particle trajectories in the laser shock cleaning process. Applied Physics A, 93(1), 147–151. https://doi.org/10.1007/s00339-008-4659-z
  • [12] Alsaadawy, M., Dewidar, M., Said, A., Maher, I., & Shehab Eldeen, T. A. (2024). A comprehensive review of the influence of laser cutting parameters on surface and kerf quality of metals. In International Journal of Advanced Manufacturing Technology (Vol. 130, Issues 3–4, pp. 1039–1074). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00170-023-12768-1
  • [13] Rajaram, N., Sheikh-Ahmad, J., & S. Hossein Cheraghi. (2003). CO2 laser cut quality of 4130 steel. 43(4), 351–358. https://doi.org/10.1016/s0890-6955(02)00270-5
  • [14] Senthilkumar, V. (2014). Laser Cutting Process – A Review. ResearchGate. https://www.researchgate.net/publication/305385939_Laser_cutting_process_-_A_Review
  • [15] Irsel, G., & Güzey, B. N. (2021). Comparison of laser beam, oxygen, and plasma arc cutting methods in terms of their advantages and disadvantages in cutting structural steels. Journal of Physics: Conference Series, 2130(1). https://doi.org/10.1088/1742-6596/2130/1/012022
  • [16] Dolgova, S., Malikov, A., Golyshev, A., & Nikulina, A. (2024). The effect of laser surfacing modes on the geometrical characteristics of the single laser tracks. Obrabotka Metallov, 26(2), 57–70. https://doi.org/10.17212/1994-6309-2024-26.2-57-70
  • [17] Biryukov, V. (2024). Increasing the wear resistance of agricultural machinery parts by laser surfacing. E3S Web of Conferences, 592. https://doi.org/10.1051/e3sconf/202459205020
  • [18] Caggiano, A., Teti, R., Alfieri, V., & Caiazzo, F. (2021). Automated laser polishing for surface finish enhancement of additive-manufactured components for the automotive industry. Production Engineering, 15(1), 109–117. https://doi.org/10.1007/s11740-020-01007-1
  • [19] W. Wang, P. Zou, J. Xu, K. F. Ehmann (2023) Surface morphology evolution mechanisms of laser polishing in ambient gas, International Journal of Mechanical Sciences, Volume 250, 2023, 108302, ISSN 0020-7403, https://doi.org/10.1016/j.ijmecsci.2023.108302
  • [20] Basha, S. M., Bhuyan, M., Basha, M. M., Venkaiah, N., & Sankar, M. R. (2019). Laser polishing of 3D printed metallic components: A review on surface integrity. Materials Today: Proceedings, 26, 2047–2054. https://doi.org/10.1016/j.matpr.2020.02.443
  • [21] Abhishek Kumar, Harikrishnan Ramadas, Cheruvu Siva Kumar, Ashish Kumar Nath, Laser polishing of additive manufactured stainless-steel parts by line focused beam: A response surface method for improving surface finish, Journal of Manufacturing Processes, Volume 133, 2025, Pages 1310-1328, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2024.12.028
  • [22] Ermergen, T., & Taylan, F. (2021). Review on Surface Quality Improvement of Additively Manufactured Metals by Laser Polishing. In Arabian Journal for Science and Engineering (Vol. 46, Issue 8, pp. 7125–7141). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13369-021-05658-9
  • [23] Haoxiang Lu, Dazhong Wang, Shujing Wu, Zili Pan, Guoqiang Wang, Guoqiang Guo, Yebing Tian, Daohui Xiang, A Review Of Laser Polishing on Ti6Al4V Based On Energy Density, Journal of Materials Processing Technology, Volume 331, 2024, 118520, ISSN 0924-0136, https://doi.org/10.1016/j.jmatprotec.2024.118520
  • [24] Jinan, L., Yanhe, S., Yuan, F., Jun, T., Chunyu, F., Hua, Z., & Chengbing, Z. (2020). Mechanism Research and Equipment Development of Laser Cleaning Rust. Journal of Physics: Conference Series, 1453(1). https://doi.org/10.1088/1742-6596/1453/1/012041
  • [25] Narayanan, V., Singh, R., & Marla, D. (2025). Optimization of Nanosecond Pulsed Laser Cleaning of Rust. Lasers in Manufacturing and Materials Processing. https://doi.org/10.1007/s40516-025-00282-z
  • [26] Gisario, A., Barletta, M. & Veniali, F. Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing. Int J Adv Manuf Technol 120, 1433–1472 (2022). https://doi.org/10.1007/s00170-022-08840-x
  • [27] Guan, B., Qin, L., Yang, G., Ren, Y., & Wang, X. (2024). Laser polishing of directed energy deposition metal parts: A review. In Additive Manufacturing Frontiers (Vol. 3, Issue 4). Elsevier B.V. https://doi.org/10.1016/j.amf.2024.200174
  • [28] Zheng, Z., Wang, C., Huang, G., Feng, W., & Liu, D. (2021). Effect of defocused nanosecond laser paint removal on mild steel substrate in the ambient atmosphere. Materials, 14(20). https://doi.org/10.3390/ma14205969
  • [29] Narayanan, V., Singh, R. K., & Marla, D. (2018). Laser cleaning for rust removal on mild steel: An experimental study on surface characteristics. MATEC Web of Conferences, 221. https://doi.org/10.1051/matecconf/201822101007
  • [30] He, Y., Cai, X., & Ye, J. (2023). Research on pulse laser cleaning and rust removal technology in power systems. AIP Advances, 13(9). https://doi.org/10.1063/5.0155263
  • [31] Garcia-Fernandez, J., Salguero, J., Batista, M., Vazquez-Martinez, J. M., & del Sol, I. (2024). Laser Surface Texturing of Cutting Tools for Improving the Machining of Ti6Al4V: A Review. In Metals (Vol. 14, Issue 12). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/met14121422
  • [32] Klich, L., Marciniak, M., & Sikorska-Czupryna, S. (2025). Optimization of the laser cutting process by integrating an automatic storage and loading system with enterprise resource management integration. Advances in Science and Technology Research Journal, 19(4), 365–376. https://doi.org/10.12913/22998624/200725
  • [33] Ni, C., Zhu, J., Zhang, B., An, K., Wang, Y., Liu, D., Lu, W., Zhu, L., & Liu, C. (2025). Recent advances in laser powder bed fusion of Ti–6Al–4V alloys: microstructure, mechanical properties, and machinability. In Virtual and Physical Prototyping (Vol. 20, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/17452759.2024.2446952
  • [34] Wang, G., Deng, J., Lei, J., Tang, W., Zhou, W., & Lei, Z. (2024). Multi-Objective Optimization of Laser Cleaning Quality of Q390 Steel Rust Layer Based on Response Surface Methodology and NSGA-II Algorithm. Materials, 17(13). https://doi.org/10.3390/ma17133109
  • [35] Ngadiono, Y., Saputra, D. A., Setiadi, B. R., & Pardjono, P. (2025). Taguchi’s Method for Optimum Cutting of Acrylic Materials on a 40-Watt CNC Laser Cutting Machine. TEM Journal, 933–939. https://doi.org/10.18421/TEM141-82
  • [36] Naresh, & Khatak, P. (2022). Laser cutting technique: A literature review. Materials for Today: Proceedings, 56, 2484–2489. https://doi.org/10.1016/j.matpr.2021.08.250
  • [37] Krajcar, D. (2014). Comparison of metal water jet cutting with laser and plasma cutting. Procedia Engineering, 69, 838–843. https://doi.org/10.1016/j.proeng.2014.03.061
  • [38] D'aurelio, G., Chita, G., & Cinquepalmi, M. (n.d.). Laser surface cleaning, de-rusting, de-painting, and de-oxidizing. Appl. Phys. A, 69. https://doi.org/10.1007/s003399900373
  • [39] Di Kang, Ping Zou, Hao Wu, Wenjie Wang, Jilin Xu, Research on ultrasonic vibration-assisted laser polishing of the 304 stainless steel, Journal of Manufacturing Processes, Volume 62, 2021, Pages 403-417, ISSN 1526-6125, https://doi.org/10.1016/j.jmapro.2020.12.009
  • [40] Manco, E., Cozzolino, E., & Astarita, A. (2022). Laser polishing of additively manufactured metal parts: a review. In Surface Engineering (Vol. 38, Issue 3, pp. 217–233). Taylor and Francis Ltd. https://doi.org/10.1080/02670844.2022.2072080
  • [41] Belosludtsev, A., Bitinaitis, I., Baltrušaitis, K., & Rodin, A. M. (n.d.). Investigation of the laser cleaning process for IBS grids in optical coating technology. https://doi.org/10.1007/s00170-021-07035-0/Published
  • [42] Zhang, H., Zhang, J., Zhang, X., Zhu, S., & Zhang, M. (2023). Analysis of Laser Cleaning and Rust Removal Technology for Substation Isolator Switches. Journal of Physics: Conference Series, 2488(1). https://doi.org/10.1088/1742-6596/2488/1/012033
  • [43] Wang, W. (2023). Surface defects detection in metal materials repaired by laser surfacing of seal welds. Journal of Measurements in Engineering, 11(3), 343–357. https://doi.org/10.21595/jme.2023.23316
  • [44] Yue, L., Wang, Z., & Li, L. (2012). Multiphysics modelling and simulation of dry laser cleaning of micro-slots with particle contaminants. Journal of Physics D Applied Physics, 45(13), 135401–135401. https://doi.org/10.1088/0022-3727/45/13/135401
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Süreçleri ve Teknolojileri, Stokastik (Olasılıksal) Süreçler, Üretim ve Hizmet Sistemleri, Üretimde Optimizasyon, Üretim ve Endüstri Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Akpaduado John 0000-0002-8220-7093

Nick Caiazzo 0009-0004-7794-5405

Tom Griese 0009-0009-7135-5638

Gönderilme Tarihi 26 Mayıs 2025
Kabul Tarihi 8 Ağustos 2025
Erken Görünüm Tarihi 8 Eylül 2025
Yayımlanma Tarihi 8 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA John, A., Caiazzo, N., & Griese, T. (2025). A Systematic Review of Laser Surfacing, Resurfacing, and Cutting. International Journal of Engineering Technologies IJET, 10(2), 57-70. https://doi.org/10.19072/ijet.1706784
AMA John A, Caiazzo N, Griese T. A Systematic Review of Laser Surfacing, Resurfacing, and Cutting. IJET. Eylül 2025;10(2):57-70. doi:10.19072/ijet.1706784
Chicago John, Akpaduado, Nick Caiazzo, ve Tom Griese. “A Systematic Review of Laser Surfacing, Resurfacing, and Cutting”. International Journal of Engineering Technologies IJET 10, sy. 2 (Eylül 2025): 57-70. https://doi.org/10.19072/ijet.1706784.
EndNote John A, Caiazzo N, Griese T (01 Eylül 2025) A Systematic Review of Laser Surfacing, Resurfacing, and Cutting. International Journal of Engineering Technologies IJET 10 2 57–70.
IEEE A. John, N. Caiazzo, ve T. Griese, “A Systematic Review of Laser Surfacing, Resurfacing, and Cutting”, IJET, c. 10, sy. 2, ss. 57–70, 2025, doi: 10.19072/ijet.1706784.
ISNAD John, Akpaduado vd. “A Systematic Review of Laser Surfacing, Resurfacing, and Cutting”. International Journal of Engineering Technologies IJET 10/2 (Eylül2025), 57-70. https://doi.org/10.19072/ijet.1706784.
JAMA John A, Caiazzo N, Griese T. A Systematic Review of Laser Surfacing, Resurfacing, and Cutting. IJET. 2025;10:57–70.
MLA John, Akpaduado vd. “A Systematic Review of Laser Surfacing, Resurfacing, and Cutting”. International Journal of Engineering Technologies IJET, c. 10, sy. 2, 2025, ss. 57-70, doi:10.19072/ijet.1706784.
Vancouver John A, Caiazzo N, Griese T. A Systematic Review of Laser Surfacing, Resurfacing, and Cutting. IJET. 2025;10(2):57-70.

ijet@gelisim.edu.tr

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)