Research Article
BibTex RIS Cite
Year 2020, , 62 - 68, 07.03.2021
https://doi.org/10.19072/ijet.809818

Abstract

References

  • IPCC, Climate Change 2013: The Physical Sciences Basis. Cambridge University Press, 2013.
  • M. Nuri Balov and A. Altunkaynak, “Trend Analyses on extreme precipitation indices based on downscaled outputs of global circulation models in Western Black Sea Basin , Turkey,” Iran. J. Sci. Technol. Trans. Civ. Eng., 2019.
  • Ö. L. Şen, A holistic view of climate change and its impacts in Turkey. ISTANBUL POLICY CENTER, 2013.
  • I. M. Held and B. J. Soden, “Robust responses of the hydrologic cycle to global warming,” J. Clim., vol. 19, pp. 5686–5699, 2006, doi: 10.1175/JCLI3990.1.
  • F. J. Wentz, L. Ricciardulli, K. Hilburn, and C. Mears, “How Much More Rain Will Global Warming Bring?\n10.1126/science.1140746,” Science (80-. )., vol. 317, no. 5835, pp. 233–235, 2007, doi: 10.1126/science.1140746.
  • F. Lambert, A. Stine, N. Krakauer, and J. Chiang, “How Much Will Precipitation Increase With Global Warming ?,” EOS, Trans. Am. Geophys. UNION, vol. 89, no. May 2008, pp. 193–200, 2008, doi: 10.1029/2008EO210001.
  • K. E. Trenberth, “Changes in precipitation with climate change,” Clim. Res., vol. 47, no. 1–2, pp. 123–138, 2011, doi: 10.3354/cr00953.
  • S. Siswanto, G. J. van Oldenborgh, G. van der Schrier, R. Jilderda, and B. van den Hurk, “Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years,” Int. J. Climatol., vol. 36, no. 9, pp. 3207–3225, 2016, doi: 10.1002/joc.4548.
  • M. Nuri Balov and A. Altunkaynak, “Frequency analyses of extreme precipitation events in Western Black Sea Basin (Turkey) based on climate change projections,” Meteorol. Appl., vol. 26, no. 3, 2019, doi: 10.1002/met.1776.
  • B. Oktay Akkoyunlu, H. Baltaci, and M. Tayanc, “Atmospheric conditions of extreme precipitation events in western Turkey for the period 2006-2015,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 1, pp. 107–119, 2019, doi: 10.5194/nhess-19-107-2019.
  • E. E. Arslantaş and E. Yeşilırmak, “Changes in the climatic growing season in western Anatolia, Turkey,” Meteorol. Appl., vol. 27, no. 2, pp. 1–16, 2020, doi: 10.1002/met.1897.
  • H. Baltaci, H. Arslan, B. O. Akkoyunlu, and H. B. Gomes, “Long‐term variability and trends of extended winter snowfall in Turkey and the role of teleconnection patterns,” Meteorol. Appl., vol. 27, no. 2, pp. 1–14, 2020, doi: 10.1002/met.1891.
  • E. Guo, Y. Wang, B. Jirigala, and E. Jin, “Spatiotemporal variations of precipitation concentration and their potential links to drought in mainland China,” J. Clean. Prod., vol. 267, p. 122004, 2020, doi: 10.1016/j.jclepro.2020.122004.
  • G. Venkata Rao, K. Venkata Reddy, R. Srinivasan, V. Sridhar, N. V. Umamahesh, and D. Pratap, “Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India,” Weather Clim. Extrem., vol. 29, no. May, p. 100265, 2020, doi: 10.1016/j.wace.2020.100265.
  • S. I. Hurtado, P. G. Zaninelli, and E. A. Agosta, “A multi-breakpoint methodology to detect changes in climatic time series. An application to wet season precipitation in subtropical Argentina,” Atmos. Res., vol. 241, no. November 2019, p. 104955, 2020, doi: 10.1016/j.atmosres.2020.104955.
  • M. Abbasnia and H. Toros, “Trend analysis of weather extremes across the coastal and non-coastal areas (case study: Turkey),” J. Earth Syst. Sci., vol. 129, no. 1, 2020, doi: 10.1007/s12040-020-1359-3.
  • P. Bostan, “Assessing variations in climate extremes over Euphrates Basin, Turkey,” Theor. Appl. Climatol., pp. 1461–1473, 2020, doi: 10.1007/s00704-020-03238-9.
  • A. Y. Sönmez and S. Kale, “Climate change effects on annual streamflow of filyos river (Turkey),” J. Water Clim. Chang., vol. 11, no. 2, pp. 420–433, 2020, doi: 10.2166/wcc.2018.060.
  • S. Shree, M. Kumar, and A. Singh, “Exploring spatial and temporal trends of diurnal temperature range in the region of the Subarnarekha river basin India,” Spat. Inf. Res., 2020, doi: 10.1007/s41324-020-00341-x.
  • S. Ahmad et al., “Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan),” Geocarto Int., vol. 35, no. 7, pp. 711–734, 2020, doi: 10.1080/10106049.2018. 1524517.
  • A. R. M. Towfiqul Islam, M. S. Rahman, R. Khatun, and Z. Hu, “Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017,” Theor. Appl. Climatol., vol. 141, no. 3–4, pp. 869–887, 2020, doi: 10.1007/s00704-020-03244-x.
  • O. Yagbasan, V. Demir, and H. Yazicigil, “Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey,” Water (Switzerland), vol. 12, no. 2, pp. 1–16, 2020, doi: 10.3390/w12020414.
  • S. Chattopadhyay, D. R. Edwards, and Y. Yu, “Contemporary and future characteristics of precipitation indices in the Kentucky River basin,” Water (Switzerland), vol. 9, no. 2, pp. 1–20, 2017, doi: 10.3390/w9020109.
  • S. Peng, Y. Ding, Z. Wen, Y. Chen, Y. Cao, and J. Ren, “Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100,” Agric. For. Meteorol., vol. 233, pp. 183–194, 2017, doi: 10.1016/j.agrformet.2016.11.129.
  • T. S. Mohan and M. Rajeevan, “Past and future trends of hydroclimatic intensity over the Indian monsoon region,” J. Geophys. Res. Atmos., vol. 122, no. 2, pp. 896–909, 2017, doi: 10.1002/2016JD025301.
  • G. Shivam, M. K. Goyal, and A. K. Sarma, “Index-based study of future precipitation changes over subansiri river catchment under changing climate,” J. Environ. Informatics, vol. 34, no. 1, pp. 1–14, 2019, doi: 10.3808/jei.201700376.
  • V. Singh, A. Sharma, and M. K. Goyal, “Projection of hydro-climatological changes over eastern Himalayan catchment by the evaluation of RegCM4 RCM and CMIP5 GCM models,” Hydrol. Res., vol. 50, no. 1, pp. 117–137, 2019, doi: 10.2166/nh.2017.193.
  • M. Nuri Balov and A. Altunkaynak, “Trend Analyses of Extreme Precipitation Indices Based on Downscaled Outputs of Global Circulation Models in Western Black Sea Basin, Turkey,” Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 43, no. 4, 2019, doi: 10.1007/s40996-019-00237-3.
  • M. L. Wrzesien and T. M. Pavelsky, “Projected Changes to Extreme Runoff and Precipitation Events From a Downscaled Simulation Over the Western United States,” Front. Earth Sci., vol. 7, no. January, pp. 1–17, 2020, doi: 10.3389/feart.2019.00355.
  • A. G. Yilmaz, “The effects of climate change on historical and future extreme rainfall in Antalya, Turkey,” Hydrol. Sci. J., vol. 60, no. 12, pp. 2148–2162, 2015, doi: 10.1080/02626667.2014.945455.
  • T. A. Nigussie and A. Altunkaynak, “Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey,” Theor. Appl. Climatol., pp. 1–15, 2018, doi: 10.1007/s00704-018-2449-x.
  • R. K. Chaturvedi, J. Joshi, M. Jayaraman, G. Bala, and N. H. Ravindranath, “Multi-model climate change projections for India under representative concentration pathways,” Curr. Sci., vol. 103, no. 7, pp. 791–802, 2012, doi: 10.2307/24088836.
  • M. Bentsen et al., “The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,” Geosci. Model Dev., vol. 6, no. 3, pp. 687–720, 2013, doi: 10.5194/gmd-6-687-2013.
  • N. N. Ishizaki, M. Nishimori, T. Iizumi, H. Shiogama, N. Hanasaki, and K. Takahashi, “Evaluation of two bias-correction methods for gridded climate scenarios over Japan,” Sci. Online Lett. Atmos., vol. 16, pp. 80–85, 2020, doi: 10.2151/SOLA.2020-014.
  • C. M. Lim, Y. Bin Yhang, and S. Ham, “Application of GCM bias correction to RCM simulations of East Asian winter climate,” Atmosphere (Basel)., vol. 10, no. 7, 2019, doi: 10.3390/atmos10070382.
  • A. Casanueva, S. Kotlarski, S. Herrera, A. M. Fischer, T. Kjellstrom, and C. Schwierz, “Climate projections of a multi-variate heat stress index: the role of downscaling and bias correction,” Geosci. Model Dev. Discuss., pp. 1–33, 2019, doi: 10.5194/gmd-2018-294.
  • S. Mohan and P. K. Bhaskaran, “Evaluation and bias correction of global climate models in the CMIP5 over the Indian Ocean region,” Environ. Monit. Assess., vol. 191, 2019, doi: 10.1007/s10661-019-7700-0.
  • J. Das, V. Poonia, S. Jha, and M. K. Goyal, “Understanding the climate change impact on crop yield over Eastern Himalayan Region: ascertaining GCM and scenario uncertainty,” Theor. Appl. Climatol., no. 2011, 2020, doi: 10.1007/s00704-020-03332-y.
  • A. Goly and R. S. V. Teegavarapu, “Optimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data,” J. Hydrol. Eng., vol. 25, no. 7, pp. 1–15, 2020, doi: 10.1061/(ASCE)HE.1943-5584.0001926.
  • E. Rocheta, J. P. Evans, and A. Sharma, “Correcting lateral boundary biases in regional climate modelling: the effect of the relaxation zone,” Clim. Dyn., no. 2017, 2020, doi: 10.1007/s00382-020-05393-1.
  • M. Mendez, B. Maathuis, D. Hein-Griggs, and L. F. Alvarado-Gamboa, “Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020482.
  • M. Nuri Balov and A. Altunkaynak, “Spatio-temporal evaluation of various global circulation models in terms of projection of different meteorological drought indices,” Environ. Earth Sci., vol. 79, no. 6, pp. 1–13, 2020, doi: 10.1007/s12665-020-8881-0.
  • R. Das Bhowmik and A. Sankarasubramanian, “Limitations of univariate linear bias correction in yielding cross-correlation between monthly precipitation and temperature,” Int. J. Climatol., vol. 39, no. 11, pp. 4479–4496, 2019, doi: 10.1002/joc.6086.
  • A. A. Akinsanola, G. J. Kooperman, A. G. Pendergrass, W. M. Hannah, and K. A. Reed, “Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations,” Environ. Res. Lett., vol. 15, no. 9, p. 094003, 2020, doi: 10.1088/1748-9326/ab92c1.
  • H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica, vol. 13, no. 3, p. 245, Jul. 1945, doi: 10.2307/1907187.
  • M. G. Kendall, Rank Correlation Methods. 4th Edition. 1957.
  • R. Sahu and R. D. Gupta, “Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971–2016,” Int. J. Remote Sens., vol. 41, no. 18, pp. 6914–6945, 2020, doi: 10.1080/01431161.2020.1752412.
  • A. G. Yilmaz, “Climate change effects and extreme rainfall non-stationarity,” vol. 170, 2016.
  • M. M. Yüceşahin, R. Bayar, and E. M. Özgür, “TÜRKİYE’DE ŞEHİRLEŞMENİN MEKANSAL DAĞILIŞI ve DEĞİŞİMİ Spatial Distribution of Urbanization and Its Change in Turkey,” Coğrafi Bilim. Derg., vol. 2, no. June, pp. 23–39, 2004.
  • https://climate4impact.eu/impactportal/data/esgfsearch.jsp#project=CORDEX-Adjustand
  • http://www.turkstat.gov.tr/Start.do;jsessionid=nm2Cf4JDhQ3bYDpyd5LTq9f2ZhJKsDyfrDwZPY2Ny0NXKSGymg18!1132332831

Influence of Climate Change on the Flood Disasters in Bursa, Turkey

Year 2020, , 62 - 68, 07.03.2021
https://doi.org/10.19072/ijet.809818

Abstract

The recent increase in the frequency and intensity of the floods resulted from huge precipitation events in Bursa Province, Turkey, is the main motivation of this study. For this purpose, the daily precipitation values from the historical data recorded between 1971 and 2000 together with the projected data of the NorESM1-M general circulation model under RCP4.5 and RCP8.5 scenarios between 2031 and 2100 were used to calculate eight extreme precipitation events. The Spearman's rho and the Mann-Kendall trend tests were used to detect the trend in the indices. The results of the trend tests showed that any change is not expected in the total amount of the yearly precipitation amount, whereas the occurrence of the intense and short duration precipitation events is expected to be more probable by the end of the current century, compared to the last 30 years of the previous century. The positive significant trends were detected in some indices. However, the magnitude of the change in the climatic parameters and the increase in the number of extreme precipitation events cannot solely explain the increase in the number of destroying flood events in the province. Other parameters such as the dramatic increase in urbanization as a result of rapid population growth during the past years (since 1960) may have a more prominent effect on the increase of the flood risk in the province which is in need of comprehensive modeling and investigation. 

References

  • IPCC, Climate Change 2013: The Physical Sciences Basis. Cambridge University Press, 2013.
  • M. Nuri Balov and A. Altunkaynak, “Trend Analyses on extreme precipitation indices based on downscaled outputs of global circulation models in Western Black Sea Basin , Turkey,” Iran. J. Sci. Technol. Trans. Civ. Eng., 2019.
  • Ö. L. Şen, A holistic view of climate change and its impacts in Turkey. ISTANBUL POLICY CENTER, 2013.
  • I. M. Held and B. J. Soden, “Robust responses of the hydrologic cycle to global warming,” J. Clim., vol. 19, pp. 5686–5699, 2006, doi: 10.1175/JCLI3990.1.
  • F. J. Wentz, L. Ricciardulli, K. Hilburn, and C. Mears, “How Much More Rain Will Global Warming Bring?\n10.1126/science.1140746,” Science (80-. )., vol. 317, no. 5835, pp. 233–235, 2007, doi: 10.1126/science.1140746.
  • F. Lambert, A. Stine, N. Krakauer, and J. Chiang, “How Much Will Precipitation Increase With Global Warming ?,” EOS, Trans. Am. Geophys. UNION, vol. 89, no. May 2008, pp. 193–200, 2008, doi: 10.1029/2008EO210001.
  • K. E. Trenberth, “Changes in precipitation with climate change,” Clim. Res., vol. 47, no. 1–2, pp. 123–138, 2011, doi: 10.3354/cr00953.
  • S. Siswanto, G. J. van Oldenborgh, G. van der Schrier, R. Jilderda, and B. van den Hurk, “Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years,” Int. J. Climatol., vol. 36, no. 9, pp. 3207–3225, 2016, doi: 10.1002/joc.4548.
  • M. Nuri Balov and A. Altunkaynak, “Frequency analyses of extreme precipitation events in Western Black Sea Basin (Turkey) based on climate change projections,” Meteorol. Appl., vol. 26, no. 3, 2019, doi: 10.1002/met.1776.
  • B. Oktay Akkoyunlu, H. Baltaci, and M. Tayanc, “Atmospheric conditions of extreme precipitation events in western Turkey for the period 2006-2015,” Nat. Hazards Earth Syst. Sci., vol. 19, no. 1, pp. 107–119, 2019, doi: 10.5194/nhess-19-107-2019.
  • E. E. Arslantaş and E. Yeşilırmak, “Changes in the climatic growing season in western Anatolia, Turkey,” Meteorol. Appl., vol. 27, no. 2, pp. 1–16, 2020, doi: 10.1002/met.1897.
  • H. Baltaci, H. Arslan, B. O. Akkoyunlu, and H. B. Gomes, “Long‐term variability and trends of extended winter snowfall in Turkey and the role of teleconnection patterns,” Meteorol. Appl., vol. 27, no. 2, pp. 1–14, 2020, doi: 10.1002/met.1891.
  • E. Guo, Y. Wang, B. Jirigala, and E. Jin, “Spatiotemporal variations of precipitation concentration and their potential links to drought in mainland China,” J. Clean. Prod., vol. 267, p. 122004, 2020, doi: 10.1016/j.jclepro.2020.122004.
  • G. Venkata Rao, K. Venkata Reddy, R. Srinivasan, V. Sridhar, N. V. Umamahesh, and D. Pratap, “Spatio-temporal analysis of rainfall extremes in the flood-prone Nagavali and Vamsadhara Basins in eastern India,” Weather Clim. Extrem., vol. 29, no. May, p. 100265, 2020, doi: 10.1016/j.wace.2020.100265.
  • S. I. Hurtado, P. G. Zaninelli, and E. A. Agosta, “A multi-breakpoint methodology to detect changes in climatic time series. An application to wet season precipitation in subtropical Argentina,” Atmos. Res., vol. 241, no. November 2019, p. 104955, 2020, doi: 10.1016/j.atmosres.2020.104955.
  • M. Abbasnia and H. Toros, “Trend analysis of weather extremes across the coastal and non-coastal areas (case study: Turkey),” J. Earth Syst. Sci., vol. 129, no. 1, 2020, doi: 10.1007/s12040-020-1359-3.
  • P. Bostan, “Assessing variations in climate extremes over Euphrates Basin, Turkey,” Theor. Appl. Climatol., pp. 1461–1473, 2020, doi: 10.1007/s00704-020-03238-9.
  • A. Y. Sönmez and S. Kale, “Climate change effects on annual streamflow of filyos river (Turkey),” J. Water Clim. Chang., vol. 11, no. 2, pp. 420–433, 2020, doi: 10.2166/wcc.2018.060.
  • S. Shree, M. Kumar, and A. Singh, “Exploring spatial and temporal trends of diurnal temperature range in the region of the Subarnarekha river basin India,” Spat. Inf. Res., 2020, doi: 10.1007/s41324-020-00341-x.
  • S. Ahmad et al., “Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan),” Geocarto Int., vol. 35, no. 7, pp. 711–734, 2020, doi: 10.1080/10106049.2018. 1524517.
  • A. R. M. Towfiqul Islam, M. S. Rahman, R. Khatun, and Z. Hu, “Spatiotemporal trends in the frequency of daily rainfall in Bangladesh during 1975–2017,” Theor. Appl. Climatol., vol. 141, no. 3–4, pp. 869–887, 2020, doi: 10.1007/s00704-020-03244-x.
  • O. Yagbasan, V. Demir, and H. Yazicigil, “Trend analyses of meteorological variables and lake levels for two shallow lakes in central Turkey,” Water (Switzerland), vol. 12, no. 2, pp. 1–16, 2020, doi: 10.3390/w12020414.
  • S. Chattopadhyay, D. R. Edwards, and Y. Yu, “Contemporary and future characteristics of precipitation indices in the Kentucky River basin,” Water (Switzerland), vol. 9, no. 2, pp. 1–20, 2017, doi: 10.3390/w9020109.
  • S. Peng, Y. Ding, Z. Wen, Y. Chen, Y. Cao, and J. Ren, “Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100,” Agric. For. Meteorol., vol. 233, pp. 183–194, 2017, doi: 10.1016/j.agrformet.2016.11.129.
  • T. S. Mohan and M. Rajeevan, “Past and future trends of hydroclimatic intensity over the Indian monsoon region,” J. Geophys. Res. Atmos., vol. 122, no. 2, pp. 896–909, 2017, doi: 10.1002/2016JD025301.
  • G. Shivam, M. K. Goyal, and A. K. Sarma, “Index-based study of future precipitation changes over subansiri river catchment under changing climate,” J. Environ. Informatics, vol. 34, no. 1, pp. 1–14, 2019, doi: 10.3808/jei.201700376.
  • V. Singh, A. Sharma, and M. K. Goyal, “Projection of hydro-climatological changes over eastern Himalayan catchment by the evaluation of RegCM4 RCM and CMIP5 GCM models,” Hydrol. Res., vol. 50, no. 1, pp. 117–137, 2019, doi: 10.2166/nh.2017.193.
  • M. Nuri Balov and A. Altunkaynak, “Trend Analyses of Extreme Precipitation Indices Based on Downscaled Outputs of Global Circulation Models in Western Black Sea Basin, Turkey,” Iran. J. Sci. Technol. - Trans. Civ. Eng., vol. 43, no. 4, 2019, doi: 10.1007/s40996-019-00237-3.
  • M. L. Wrzesien and T. M. Pavelsky, “Projected Changes to Extreme Runoff and Precipitation Events From a Downscaled Simulation Over the Western United States,” Front. Earth Sci., vol. 7, no. January, pp. 1–17, 2020, doi: 10.3389/feart.2019.00355.
  • A. G. Yilmaz, “The effects of climate change on historical and future extreme rainfall in Antalya, Turkey,” Hydrol. Sci. J., vol. 60, no. 12, pp. 2148–2162, 2015, doi: 10.1080/02626667.2014.945455.
  • T. A. Nigussie and A. Altunkaynak, “Impacts of climate change on the trends of extreme rainfall indices and values of maximum precipitation at Olimpiyat Station, Istanbul, Turkey,” Theor. Appl. Climatol., pp. 1–15, 2018, doi: 10.1007/s00704-018-2449-x.
  • R. K. Chaturvedi, J. Joshi, M. Jayaraman, G. Bala, and N. H. Ravindranath, “Multi-model climate change projections for India under representative concentration pathways,” Curr. Sci., vol. 103, no. 7, pp. 791–802, 2012, doi: 10.2307/24088836.
  • M. Bentsen et al., “The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,” Geosci. Model Dev., vol. 6, no. 3, pp. 687–720, 2013, doi: 10.5194/gmd-6-687-2013.
  • N. N. Ishizaki, M. Nishimori, T. Iizumi, H. Shiogama, N. Hanasaki, and K. Takahashi, “Evaluation of two bias-correction methods for gridded climate scenarios over Japan,” Sci. Online Lett. Atmos., vol. 16, pp. 80–85, 2020, doi: 10.2151/SOLA.2020-014.
  • C. M. Lim, Y. Bin Yhang, and S. Ham, “Application of GCM bias correction to RCM simulations of East Asian winter climate,” Atmosphere (Basel)., vol. 10, no. 7, 2019, doi: 10.3390/atmos10070382.
  • A. Casanueva, S. Kotlarski, S. Herrera, A. M. Fischer, T. Kjellstrom, and C. Schwierz, “Climate projections of a multi-variate heat stress index: the role of downscaling and bias correction,” Geosci. Model Dev. Discuss., pp. 1–33, 2019, doi: 10.5194/gmd-2018-294.
  • S. Mohan and P. K. Bhaskaran, “Evaluation and bias correction of global climate models in the CMIP5 over the Indian Ocean region,” Environ. Monit. Assess., vol. 191, 2019, doi: 10.1007/s10661-019-7700-0.
  • J. Das, V. Poonia, S. Jha, and M. K. Goyal, “Understanding the climate change impact on crop yield over Eastern Himalayan Region: ascertaining GCM and scenario uncertainty,” Theor. Appl. Climatol., no. 2011, 2020, doi: 10.1007/s00704-020-03332-y.
  • A. Goly and R. S. V. Teegavarapu, “Optimization and Variants of Quantile-Based Methods for Bias Corrections of Statistically Downscaled Precipitation Data,” J. Hydrol. Eng., vol. 25, no. 7, pp. 1–15, 2020, doi: 10.1061/(ASCE)HE.1943-5584.0001926.
  • E. Rocheta, J. P. Evans, and A. Sharma, “Correcting lateral boundary biases in regional climate modelling: the effect of the relaxation zone,” Clim. Dyn., no. 2017, 2020, doi: 10.1007/s00382-020-05393-1.
  • M. Mendez, B. Maathuis, D. Hein-Griggs, and L. F. Alvarado-Gamboa, “Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020482.
  • M. Nuri Balov and A. Altunkaynak, “Spatio-temporal evaluation of various global circulation models in terms of projection of different meteorological drought indices,” Environ. Earth Sci., vol. 79, no. 6, pp. 1–13, 2020, doi: 10.1007/s12665-020-8881-0.
  • R. Das Bhowmik and A. Sankarasubramanian, “Limitations of univariate linear bias correction in yielding cross-correlation between monthly precipitation and temperature,” Int. J. Climatol., vol. 39, no. 11, pp. 4479–4496, 2019, doi: 10.1002/joc.6086.
  • A. A. Akinsanola, G. J. Kooperman, A. G. Pendergrass, W. M. Hannah, and K. A. Reed, “Seasonal representation of extreme precipitation indices over the United States in CMIP6 present-day simulations,” Environ. Res. Lett., vol. 15, no. 9, p. 094003, 2020, doi: 10.1088/1748-9326/ab92c1.
  • H. B. Mann, “Nonparametric Tests Against Trend,” Econometrica, vol. 13, no. 3, p. 245, Jul. 1945, doi: 10.2307/1907187.
  • M. G. Kendall, Rank Correlation Methods. 4th Edition. 1957.
  • R. Sahu and R. D. Gupta, “Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971–2016,” Int. J. Remote Sens., vol. 41, no. 18, pp. 6914–6945, 2020, doi: 10.1080/01431161.2020.1752412.
  • A. G. Yilmaz, “Climate change effects and extreme rainfall non-stationarity,” vol. 170, 2016.
  • M. M. Yüceşahin, R. Bayar, and E. M. Özgür, “TÜRKİYE’DE ŞEHİRLEŞMENİN MEKANSAL DAĞILIŞI ve DEĞİŞİMİ Spatial Distribution of Urbanization and Its Change in Turkey,” Coğrafi Bilim. Derg., vol. 2, no. June, pp. 23–39, 2004.
  • https://climate4impact.eu/impactportal/data/esgfsearch.jsp#project=CORDEX-Adjustand
  • http://www.turkstat.gov.tr/Start.do;jsessionid=nm2Cf4JDhQ3bYDpyd5LTq9f2ZhJKsDyfrDwZPY2Ny0NXKSGymg18!1132332831
There are 51 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mustafa Nuri Balov 0000-0001-6390-5681

Publication Date March 7, 2021
Acceptance Date November 6, 2020
Published in Issue Year 2020

Cite

APA Balov, M. N. (2021). Influence of Climate Change on the Flood Disasters in Bursa, Turkey. International Journal of Engineering Technologies IJET, 6(4), 62-68. https://doi.org/10.19072/ijet.809818
AMA Balov MN. Influence of Climate Change on the Flood Disasters in Bursa, Turkey. IJET. March 2021;6(4):62-68. doi:10.19072/ijet.809818
Chicago Balov, Mustafa Nuri. “Influence of Climate Change on the Flood Disasters in Bursa, Turkey”. International Journal of Engineering Technologies IJET 6, no. 4 (March 2021): 62-68. https://doi.org/10.19072/ijet.809818.
EndNote Balov MN (March 1, 2021) Influence of Climate Change on the Flood Disasters in Bursa, Turkey. International Journal of Engineering Technologies IJET 6 4 62–68.
IEEE M. N. Balov, “Influence of Climate Change on the Flood Disasters in Bursa, Turkey”, IJET, vol. 6, no. 4, pp. 62–68, 2021, doi: 10.19072/ijet.809818.
ISNAD Balov, Mustafa Nuri. “Influence of Climate Change on the Flood Disasters in Bursa, Turkey”. International Journal of Engineering Technologies IJET 6/4 (March 2021), 62-68. https://doi.org/10.19072/ijet.809818.
JAMA Balov MN. Influence of Climate Change on the Flood Disasters in Bursa, Turkey. IJET. 2021;6:62–68.
MLA Balov, Mustafa Nuri. “Influence of Climate Change on the Flood Disasters in Bursa, Turkey”. International Journal of Engineering Technologies IJET, vol. 6, no. 4, 2021, pp. 62-68, doi:10.19072/ijet.809818.
Vancouver Balov MN. Influence of Climate Change on the Flood Disasters in Bursa, Turkey. IJET. 2021;6(4):62-8.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)