Research Article
BibTex RIS Cite
Year 2021, , 33 - 38, 24.06.2021
https://doi.org/10.19072/ijet.911314

Abstract

References

  • X. Y. Zhuang, L. Chen, S. Komarneni, C. H. Zhou, D. S. Tong, H. M. Yang, W. H. Yu and H. Wang, “Fly ash-based geopolymer: clean production, properties and applications”, J. Clean. Prod., vol. 125, pp. 253-267, 2016.
  • T.-A. Kua, M. A. Imteaz, A. Arulrajah and S. Horpibulsuk, “Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground”, Int. J. Sustain. Eng., vol. 12, pp. 223-232, 2019.
  • M. H. Samarakoon, P. G. Ranjith, T. D. Rathnaweera and M. S. A. Perera, “Recent advances in alkaline cement binders: a review”, J. Clean. Prod., vol. 227, pp. 70-87, 2019.
  • S. A. Bernal , R. M. de Gutiérrez, A. L. Pedraza, J. L. Provis, E. D. Rodriguez, S. Delvasto, “Effect of binder content on the performance of alkali-activated slag concretes”, Cement Concrete Res., vol. 41, pp. 1-8, 2011.
  • M. O. Yusuf, M. A. Megat Johari, Z. A. Ahmad and M. Maslehuddin, “Performance of different grades of palm oil fuel ash with ground slag as base materials in the synthesis of alkaline activated mortar”, J. Adv. Concr. Technol., vol. 12, pp. 378-387, 2014.
  • N. R. Rakhimova and R. Z. Rakhimov, “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste”, Mater. Des., vol. 85, pp. 324-331, 2015.
  • M. Nasir, M. J. M. Azmi, M. O. Yusuf, M. Maslehuddin, M. A. Al-Harthi and D. Hatim, “Impact of slag content and curing methods on the strength of alkaline-activated silico-manganese fume/blast furnace slag mortars”, Arabian J. Sci. Eng., 44, pp. 8325-8335, 2019.
  • G. F. Huseien, A. R. M. Sam, K. W. Shah, J. Mirza and Tahir M. Md, “Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS”, Construct. Build. Mater., 210, pp. 78-92, 2019.
  • I. H. Aziz, M. M. A. B. Abdullah, M. A. A. M. Salleh, E. A. Azimi, J. Chaiprapa and A. V. Sandu, “Strength development of solely ground granulated blast furnace slag geopolymers”, Construct. Build. Mater., vol. 250, 118720, 2020.
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous and S. J. Barnett, “Factors influencing the compressive strength of fly ash based geopolymers”, Construct. Build. Mater., 110, pp. 355-368, 2016.
  • M. Ibrahim and M. Maslehuddin, “An overview of factors influencing the properties of alkali-activated binders”, J. Clean. Prod., vol. 286, 124972, 2021.
  • A. M. Humad, K. Habermehl-Cwirzen and A. Cwirzen, “Effects of fineness and chemical composition of blast furnace slag on properties of alkali-activated binder”, Materials, vol. 12, 3447, 2019.
  • A.R. Brough, M. Holloway, J.M. Sykes and A. Atkinson, “Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid”, Cement Concr. Compos., vol. 30, pp. 1375-1379, 2000.
  • M. Saedi, K. Behfarnia and H. Soltanian, “The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement”, J. Build. Eng., vol. 26, 100897, pp. 1-8, 2019.
  • ASTM C 989-2018, Standard specifications for ground granulated blast – furnace slag for use in concrete and mortars, The American Society for Testing and Materials, Pennsylvania, 2018.
  • R. D. Hooton. The Reactivity and Hydration of Blast Furnace Slag, in Supplementary Cementing Materials for Concrete, Malhotra, V.M. ed., Canada Center for Mineral and Energy Technology (CANMET), 1987, pp. 247-330.
  • A. M. Humad, J. L. Provis and A. Cwirzen, “Alkali activation of a high MgO GGBS – fresh and hardened properties”, Mag. Concr. Res., vol. 70, pp. 1256–1264, 2018.
  • A. O. Pehlivan, “Effect of alkali content and activator modulus on mechanical properties of alkali activated mortars”, Karaelmas Sci. Eng. J., vol. 10, pp. 177–185, 2020.
  • N. R. Rakhimova and R. Z. Rakhimov, “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste”, Mater. Des., 85, pp. 324–331, 2015.
  • TS EN 196-1, Methods of Testing Cement-Part 1: Determination of strength, Turkish Standards Institute, Ankara, Turkey, 2002.
  • TS EN 480-5, Admixtures for concrete, mortar and grout- Test methods-Part 5: Determination of capillary absorption, Turkish Standards Institute, Ankara, 2008.

Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars

Year 2021, , 33 - 38, 24.06.2021
https://doi.org/10.19072/ijet.911314

Abstract

The main objective of this experimental study was to investigate the effect of the slag fineness on the compressive and flexural strengths of ground granulated alkali-activated blast furnace slag mortars. Two types of alkali-activated mortar mixtures were produced using blast furnace slags having the Blaine fineness of 400 m2/kg and 600 m2/kg. Three curing methods; water curing, air curing and outdoor conditions, were applied to the samples. Compressive strengths and flexural strengths of the mixtures were determined at various ages and capillary water absorption tests were also performed. Test results confirm that increasing the fineness of slag had an important effect on the properties obtained. The curing method is also an important factor affecting the results.

References

  • X. Y. Zhuang, L. Chen, S. Komarneni, C. H. Zhou, D. S. Tong, H. M. Yang, W. H. Yu and H. Wang, “Fly ash-based geopolymer: clean production, properties and applications”, J. Clean. Prod., vol. 125, pp. 253-267, 2016.
  • T.-A. Kua, M. A. Imteaz, A. Arulrajah and S. Horpibulsuk, “Environmental and economic viability of Alkali Activated Material (AAM) comprising slag, fly ash and spent coffee ground”, Int. J. Sustain. Eng., vol. 12, pp. 223-232, 2019.
  • M. H. Samarakoon, P. G. Ranjith, T. D. Rathnaweera and M. S. A. Perera, “Recent advances in alkaline cement binders: a review”, J. Clean. Prod., vol. 227, pp. 70-87, 2019.
  • S. A. Bernal , R. M. de Gutiérrez, A. L. Pedraza, J. L. Provis, E. D. Rodriguez, S. Delvasto, “Effect of binder content on the performance of alkali-activated slag concretes”, Cement Concrete Res., vol. 41, pp. 1-8, 2011.
  • M. O. Yusuf, M. A. Megat Johari, Z. A. Ahmad and M. Maslehuddin, “Performance of different grades of palm oil fuel ash with ground slag as base materials in the synthesis of alkaline activated mortar”, J. Adv. Concr. Technol., vol. 12, pp. 378-387, 2014.
  • N. R. Rakhimova and R. Z. Rakhimov, “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste”, Mater. Des., vol. 85, pp. 324-331, 2015.
  • M. Nasir, M. J. M. Azmi, M. O. Yusuf, M. Maslehuddin, M. A. Al-Harthi and D. Hatim, “Impact of slag content and curing methods on the strength of alkaline-activated silico-manganese fume/blast furnace slag mortars”, Arabian J. Sci. Eng., 44, pp. 8325-8335, 2019.
  • G. F. Huseien, A. R. M. Sam, K. W. Shah, J. Mirza and Tahir M. Md, “Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS”, Construct. Build. Mater., 210, pp. 78-92, 2019.
  • I. H. Aziz, M. M. A. B. Abdullah, M. A. A. M. Salleh, E. A. Azimi, J. Chaiprapa and A. V. Sandu, “Strength development of solely ground granulated blast furnace slag geopolymers”, Construct. Build. Mater., vol. 250, 118720, 2020.
  • M. Soutsos, A. P. Boyle, R. Vinai, A. Hadjierakleous and S. J. Barnett, “Factors influencing the compressive strength of fly ash based geopolymers”, Construct. Build. Mater., 110, pp. 355-368, 2016.
  • M. Ibrahim and M. Maslehuddin, “An overview of factors influencing the properties of alkali-activated binders”, J. Clean. Prod., vol. 286, 124972, 2021.
  • A. M. Humad, K. Habermehl-Cwirzen and A. Cwirzen, “Effects of fineness and chemical composition of blast furnace slag on properties of alkali-activated binder”, Materials, vol. 12, 3447, 2019.
  • A.R. Brough, M. Holloway, J.M. Sykes and A. Atkinson, “Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid”, Cement Concr. Compos., vol. 30, pp. 1375-1379, 2000.
  • M. Saedi, K. Behfarnia and H. Soltanian, “The effect of the blaine fineness on the mechanical properties of the alkali-activated slag cement”, J. Build. Eng., vol. 26, 100897, pp. 1-8, 2019.
  • ASTM C 989-2018, Standard specifications for ground granulated blast – furnace slag for use in concrete and mortars, The American Society for Testing and Materials, Pennsylvania, 2018.
  • R. D. Hooton. The Reactivity and Hydration of Blast Furnace Slag, in Supplementary Cementing Materials for Concrete, Malhotra, V.M. ed., Canada Center for Mineral and Energy Technology (CANMET), 1987, pp. 247-330.
  • A. M. Humad, J. L. Provis and A. Cwirzen, “Alkali activation of a high MgO GGBS – fresh and hardened properties”, Mag. Concr. Res., vol. 70, pp. 1256–1264, 2018.
  • A. O. Pehlivan, “Effect of alkali content and activator modulus on mechanical properties of alkali activated mortars”, Karaelmas Sci. Eng. J., vol. 10, pp. 177–185, 2020.
  • N. R. Rakhimova and R. Z. Rakhimov, “Alkali-activated cements and mortars based on blast furnace slag and red clay brick waste”, Mater. Des., 85, pp. 324–331, 2015.
  • TS EN 196-1, Methods of Testing Cement-Part 1: Determination of strength, Turkish Standards Institute, Ankara, Turkey, 2002.
  • TS EN 480-5, Admixtures for concrete, mortar and grout- Test methods-Part 5: Determination of capillary absorption, Turkish Standards Institute, Ankara, 2008.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Hasan Biricik 0000-0002-4346-4994

Işıl Sanrı Karapınar 0000-0002-3695-5867

Publication Date June 24, 2021
Acceptance Date May 3, 2021
Published in Issue Year 2021

Cite

APA Biricik, H., & Sanrı Karapınar, I. (2021). Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars. International Journal of Engineering Technologies IJET, 7(2), 33-38. https://doi.org/10.19072/ijet.911314
AMA Biricik H, Sanrı Karapınar I. Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars. IJET. June 2021;7(2):33-38. doi:10.19072/ijet.911314
Chicago Biricik, Hasan, and Işıl Sanrı Karapınar. “Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars”. International Journal of Engineering Technologies IJET 7, no. 2 (June 2021): 33-38. https://doi.org/10.19072/ijet.911314.
EndNote Biricik H, Sanrı Karapınar I (June 1, 2021) Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars. International Journal of Engineering Technologies IJET 7 2 33–38.
IEEE H. Biricik and I. Sanrı Karapınar, “Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars”, IJET, vol. 7, no. 2, pp. 33–38, 2021, doi: 10.19072/ijet.911314.
ISNAD Biricik, Hasan - Sanrı Karapınar, Işıl. “Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars”. International Journal of Engineering Technologies IJET 7/2 (June 2021), 33-38. https://doi.org/10.19072/ijet.911314.
JAMA Biricik H, Sanrı Karapınar I. Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars. IJET. 2021;7:33–38.
MLA Biricik, Hasan and Işıl Sanrı Karapınar. “Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars”. International Journal of Engineering Technologies IJET, vol. 7, no. 2, 2021, pp. 33-38, doi:10.19072/ijet.911314.
Vancouver Biricik H, Sanrı Karapınar I. Effect of Slag Fineness and Curing Conditions on the Mechanical Properties of Alkali-Activated Blast Furnace Slag Mortars. IJET. 2021;7(2):33-8.

88x31.png Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)