Araştırma Makalesi
BibTex RIS Kaynak Göster

Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors

Yıl 2024, Cilt: 9 Sayı: 4, 123 - 127, 10.03.2025
https://doi.org/10.19072/ijet.1618541

Öz

Silicon-based electronic devices as a three terminal field-effect transistor is predictably reached to its extreme limitation by getting its channel length below the 10nm regime technology and suffering from numerous scaling drawbacks. As a technology progress, replaced of a new material in transistor channel is considered. Therefore, due to excellent properties new material as a Nano Scrolls are purposed. These replacements for the traditional silicon-based FET, plays a significant role to increasing the device speed. However, shrinking of the device dimensions has led to challenges such as leakage current, short channel effects, high power consumption, interconnect difficulties and quantum effects, these Nano-device and Nano-structures are the perfect candidate to overcome the scaling problems. In the present paper investigation of the channel scaling and the charge carrier mobility behavior as one of the most remarkable characteristics for modeling of nanoscale Metal Oxide field-effect transistors is considered. This numerical mobility model of charge carrier is derived analytically for the Graphene Nano Ribbons Field-Effect Transistor, in which the carrier concentration, temperature, channel length and channel’s resistance characteristics are highlighted. According to theses carrier mobility model of GNS-based FET transistor, the carrier’s mobility versus carrier concentration is decreased. By expanding the channel length and rising the temperature the mobility is reduced. Moreover, the channel length increasing caused to growing the channel current. By increasing the channel length, the channel resistance and carrier mobility is declined. The temperature rising decreases the carrier’s mobility and the channel length expanding increases the mobility. Finally, comparison of the model by experimental results, supports the acceptability of model and can maintenance the appropriately of the model outcomes by experimental.

Kaynakça

  • [1] Rahman, M., et al., Analytical investigation on the electrooptical properties of graphene nanoscrolls for SPR-based sensor application. Journal of Computational Electronics, 2017. 16(3): p. 787-795.
  • [2] Pan, H., Y. Feng, and J. Lin, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Physical Review B, 2005. 72(8).
  • [3] Chen, Y., J. Lu, and Z.X. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. Journal of Physical Chemistry C, 2007. 111(4): p. 1625-1630.
  • [4] Xie, X., et al., Controlled Fabrication of High-Quality Carbon Nanoscrolls from Monolayer Graphene. Nano Letters, 2009. 9(7): p. 2565-2570.
  • [5] Shi, X.H., N.M. Pugno, and H.J. Gao, MECHANICS OF CARBON NANOSCROLLS: A REVIEW. Acta Mechanica Solida Sinica, 2010. 23(6): p. 484-497.
  • [6] Schaper, A.K., et al., Observations of the electrical behaviour of catalytically grown scrolled graphene. Carbon, 2011. 49(6): p. 1821-1828.
  • [7] Rurali, R., V. Coluci, and D. Galvao, Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations. Physical Review B, 2006. 74(8): p. 085414.
  • [8] Peng, X., et al., Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010. 48(13): p. 3760-3768.
  • [9] Mpourmpakis, G., E. Tylianakis, and G.E. Froudakis, Carbon nanoscrolls: A promising material for hydrogen storage. Nano Letters, 2007. 7(7): p. 1893-1897.
  • [10] Mohanapriya, K. and N. Jha, Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application. Applied Surface Science, 2018. 449: p. 461-467.
  • [11] Coluci, V.R., et al., Prediction of the hydrogen storage capacity of carbon nanoscrolls. Physical Review B, 2007. 75(12).
  • [12] Coluci, V.R., et al., Hydrogen storage in carbon nanoscrolls: A molecular dynamics study, in Hydrogen Cycle-Generation, Storage and Fuel Cells, A. Dillion, et al., Editors. 2006. p. 153-+.
  • [13] Braga, S.F., et al., Structure and dynamics of carbon nanoscrolls. Nano Letters, 2004. 4(5): p. 881-884.
  • [14] Atri, P., D.C. Tiwari, and R. Sharma, Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications. Synthetic Metals, 2017. 227: p. 21-28.
  • [15] Khaledian, M., R. Ismail, and E. Akbari, Band structures of graphene nanoscrolls and their dispersion relation near the Fermi point. RSC Advances, 2016. 6(45): p. 38753-38760.
  • [16] Zareiee, M., High Performance Nano Device with Reduced Short Channel Effects in High Temperature Applications. ECS Journal of Solid State Science and Technology, 2017. 6: p. M75-M78.
  • [17] N, B.S. and P.S. P. Modeling and Simulation of Graphene NanoribbonField Effect Transistor (GNRFET). in 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). 2022.
  • [18] Hassanzadazar, M., et al., Electrical property analytical prediction on archimedes chiral carbon nanoscrolls. Journal of Electronic Materials, 2016. 45(10): p. 5404-5411.
  • [19] Hamzah, M.A.N., et al., Geometry Effect on Graphene Nanoscrolls Band Gap. Journal of Computational and Theoretical Nanoscience, 2013. 10(3): p. 581-586.
  • [20] Lemme, M.C., et al., Mobility in graphene double gate field effect transistors. Solid-State Electronics, 2008. 52(4): p. 514-518.
  • [21] Amin, N.A., et al., Low-field mobility model on parabolic band energy of graphene nanoribbon. Modern Physics Letters B, 2011. 25(04): p. 281-290.
  • [22] Hillebrecht, F.U., Photoemission: Spin-polarized and Angle-resolved, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 6929-6936.
  • [23] Hashim, Y., Investigation and design of ion-implanted MOSFET based on (18 nm) channel length. TELKOMNIKA (Telecommunication, Computing, Electronics and Control), 2020. 18(5): p. 2635-2641.
  • [25] Ahmadi, M.T., B.A. Arashloo, and T.K. Nguyen, Analytical modeling of graphene oxide based memristor. Ain Shams Engineering Journal, 2021. 12(2): p. 1741-1748.
  • [26] Rahmani, M., et al., Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs. Journal of Electronic Materials, 2017. 46(10): p. 6188-6194.
  • [27] Peng, K. and M.B. Johnston, The application of one-dimensional nanostructures in terahertz frequency devices. Applied Physics Reviews, 2021. 8(4): p. 041314.
  • [28] Nam, Y., et al., Ballistic transport limited by electron-hole collisions in charge-neutral graphene. 2017.

Grafen Nano Scroll Tabanlı Transistörlerdeki Kanal Karakteristiklerinin Analitik Olarak İncelenmesi

Yıl 2024, Cilt: 9 Sayı: 4, 123 - 127, 10.03.2025
https://doi.org/10.19072/ijet.1618541

Öz

Üç terminalli alan etkili bir transistör olarak silikon bazlı elektronik cihazlar, kanal uzunluğunun 10nm rejim teknolojisinin altına alınması ve çok sayıda ölçeklendirme dezavantajından yararlanma nedeniyle tahmin edilebileceği gibi aşırı sınırlamalarına ulaşmaktadır. Teknoloji ilerledikçe transistör kanalında yeni bir malzemenin değiştirilmesi düşünülmektedir. Bu nedenle, mükemmel özellikleri nedeniyle Nano Scroll gibi yeni malzemeler kulanmaktadır. Geleneksel silikon bazlı FET'in yerine geçen bu değişiklikler, cihazın hızının arttırılmasında önemli bir rol oynuyor. Ancak cihaz boyutlarının küçülmesi, kaçak akım, kısa kanal etkileri, yüksek güç tüketimi, ara bağlantı zorlukları ve kuantum etkileri gibi zorluklara yol açmıştır; bu Nano cihaz ve Nano yapılar, ölçeklendirme sorunlarının üstesinden gelmek için mükemmel bir adaydırlar. Bu makalede, nano ölçekli Metal Oksit alan etkili transistörlerin modellenmesinde en dikkat çekici özelliklerden biri olan kanal ölçeklendirme ve yük taşıyıcı hareketlilik davranışının incelenmesi göz altına alınmaktadır. Yük taşıyıcısının bu sayısal hareketlilik modeli, taşıyıcı konsantrasyonunun, sıcaklığın, kanal uzunluğunun ve kanalın direnç özelliklerinin vurgulandığı Grafen Nano Skroll Alan Etkili Transistör için analitik olarak türetilmiştir. GNS tabanlı FET transistörün bu taşıyıcı hareketlilik modeline göre taşıyıcının hareketliliği, taşıyıcı konsantrasyonuna göre azalır. Kanal uzunluğunun genişletilmesi ve sıcaklığın arttırılmasıyla hareketlilik azaltılır. Ayrıca kanal uzunluğunun artması kanal akımının da artmasına neden olmuştur. Kanal uzunluğunun arttırılmasıyla kanal direnci ve taşıyıcı hareketliliği azalır. Sıcaklık artışı taşıyıcının hareketliliğini azaltır ve kanal uzunluğunun genişlemesi hareketliliği artırır. Son olarak, modelin deneysel sonuçlarla karşılaştırılması, modelin kabul edilebilirliğini destekler ve model sonuçlarının deneysel olarak uygun şekilde korunmasını sağlayabilirz.

Kaynakça

  • [1] Rahman, M., et al., Analytical investigation on the electrooptical properties of graphene nanoscrolls for SPR-based sensor application. Journal of Computational Electronics, 2017. 16(3): p. 787-795.
  • [2] Pan, H., Y. Feng, and J. Lin, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Physical Review B, 2005. 72(8).
  • [3] Chen, Y., J. Lu, and Z.X. Gao, Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. Journal of Physical Chemistry C, 2007. 111(4): p. 1625-1630.
  • [4] Xie, X., et al., Controlled Fabrication of High-Quality Carbon Nanoscrolls from Monolayer Graphene. Nano Letters, 2009. 9(7): p. 2565-2570.
  • [5] Shi, X.H., N.M. Pugno, and H.J. Gao, MECHANICS OF CARBON NANOSCROLLS: A REVIEW. Acta Mechanica Solida Sinica, 2010. 23(6): p. 484-497.
  • [6] Schaper, A.K., et al., Observations of the electrical behaviour of catalytically grown scrolled graphene. Carbon, 2011. 49(6): p. 1821-1828.
  • [7] Rurali, R., V. Coluci, and D. Galvao, Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: first-principles calculations. Physical Review B, 2006. 74(8): p. 085414.
  • [8] Peng, X., et al., Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010. 48(13): p. 3760-3768.
  • [9] Mpourmpakis, G., E. Tylianakis, and G.E. Froudakis, Carbon nanoscrolls: A promising material for hydrogen storage. Nano Letters, 2007. 7(7): p. 1893-1897.
  • [10] Mohanapriya, K. and N. Jha, Fabrication of one dimensional graphene nanoscrolls for high performance supercapacitor application. Applied Surface Science, 2018. 449: p. 461-467.
  • [11] Coluci, V.R., et al., Prediction of the hydrogen storage capacity of carbon nanoscrolls. Physical Review B, 2007. 75(12).
  • [12] Coluci, V.R., et al., Hydrogen storage in carbon nanoscrolls: A molecular dynamics study, in Hydrogen Cycle-Generation, Storage and Fuel Cells, A. Dillion, et al., Editors. 2006. p. 153-+.
  • [13] Braga, S.F., et al., Structure and dynamics of carbon nanoscrolls. Nano Letters, 2004. 4(5): p. 881-884.
  • [14] Atri, P., D.C. Tiwari, and R. Sharma, Synthesis of reduced graphene oxide nanoscrolls embedded in polypyrrole matrix for supercapacitor applications. Synthetic Metals, 2017. 227: p. 21-28.
  • [15] Khaledian, M., R. Ismail, and E. Akbari, Band structures of graphene nanoscrolls and their dispersion relation near the Fermi point. RSC Advances, 2016. 6(45): p. 38753-38760.
  • [16] Zareiee, M., High Performance Nano Device with Reduced Short Channel Effects in High Temperature Applications. ECS Journal of Solid State Science and Technology, 2017. 6: p. M75-M78.
  • [17] N, B.S. and P.S. P. Modeling and Simulation of Graphene NanoribbonField Effect Transistor (GNRFET). in 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). 2022.
  • [18] Hassanzadazar, M., et al., Electrical property analytical prediction on archimedes chiral carbon nanoscrolls. Journal of Electronic Materials, 2016. 45(10): p. 5404-5411.
  • [19] Hamzah, M.A.N., et al., Geometry Effect on Graphene Nanoscrolls Band Gap. Journal of Computational and Theoretical Nanoscience, 2013. 10(3): p. 581-586.
  • [20] Lemme, M.C., et al., Mobility in graphene double gate field effect transistors. Solid-State Electronics, 2008. 52(4): p. 514-518.
  • [21] Amin, N.A., et al., Low-field mobility model on parabolic band energy of graphene nanoribbon. Modern Physics Letters B, 2011. 25(04): p. 281-290.
  • [22] Hillebrecht, F.U., Photoemission: Spin-polarized and Angle-resolved, in Encyclopedia of Materials: Science and Technology, K.H.J. Buschow, et al., Editors. 2001, Elsevier: Oxford. p. 6929-6936.
  • [23] Hashim, Y., Investigation and design of ion-implanted MOSFET based on (18 nm) channel length. TELKOMNIKA (Telecommunication, Computing, Electronics and Control), 2020. 18(5): p. 2635-2641.
  • [25] Ahmadi, M.T., B.A. Arashloo, and T.K. Nguyen, Analytical modeling of graphene oxide based memristor. Ain Shams Engineering Journal, 2021. 12(2): p. 1741-1748.
  • [26] Rahmani, M., et al., Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs. Journal of Electronic Materials, 2017. 46(10): p. 6188-6194.
  • [27] Peng, K. and M.B. Johnston, The application of one-dimensional nanostructures in terahertz frequency devices. Applied Physics Reviews, 2021. 8(4): p. 041314.
  • [28] Nam, Y., et al., Ballistic transport limited by electron-hole collisions in charge-neutral graphene. 2017.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikroelektronik
Bölüm Makaleler
Yazarlar

Banafsheh Alizadeh Arashloo 0000-0002-1400-5625

Erken Görünüm Tarihi 8 Mart 2025
Yayımlanma Tarihi 10 Mart 2025
Gönderilme Tarihi 12 Ocak 2025
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

APA Alizadeh Arashloo, B. (2025). Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors. International Journal of Engineering Technologies IJET, 9(4), 123-127. https://doi.org/10.19072/ijet.1618541
AMA Alizadeh Arashloo B. Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors. IJET. Mart 2025;9(4):123-127. doi:10.19072/ijet.1618541
Chicago Alizadeh Arashloo, Banafsheh. “Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll Based Transistors”. International Journal of Engineering Technologies IJET 9, sy. 4 (Mart 2025): 123-27. https://doi.org/10.19072/ijet.1618541.
EndNote Alizadeh Arashloo B (01 Mart 2025) Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors. International Journal of Engineering Technologies IJET 9 4 123–127.
IEEE B. Alizadeh Arashloo, “Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors”, IJET, c. 9, sy. 4, ss. 123–127, 2025, doi: 10.19072/ijet.1618541.
ISNAD Alizadeh Arashloo, Banafsheh. “Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll Based Transistors”. International Journal of Engineering Technologies IJET 9/4 (Mart 2025), 123-127. https://doi.org/10.19072/ijet.1618541.
JAMA Alizadeh Arashloo B. Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors. IJET. 2025;9:123–127.
MLA Alizadeh Arashloo, Banafsheh. “Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll Based Transistors”. International Journal of Engineering Technologies IJET, c. 9, sy. 4, 2025, ss. 123-7, doi:10.19072/ijet.1618541.
Vancouver Alizadeh Arashloo B. Analytical Investigation of the Channel Characteristics in Graphene Nano Scroll based Transistors. IJET. 2025;9(4):123-7.

ijet@gelisim.edu.tr

 Alıntı-Gayriticari-Türetilemez 4.0 Uluslararası (CC BY-NC-ND 4.0)