Araştırma Makalesi
BibTex RIS Kaynak Göster

A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC

Yıl 2019, Cilt: 5 Sayı: 2, 23 - 35, 17.07.2019

Öz

Beta-lactam antibiotics were the first and most common therapy in the treatment of bacterial infections. Multiple resistance emerged and became a major public health problem. To overcome this problem there are several techniques. The main objective of this research is to systematically review and evaluate of b-lactam antibiotic. In this paper, will try to answer the question: what are the techniques and modification that use to enhance drug activity and prevent bacterial resistance. Will start by explaining the meaning of β-lactam antibiotic, then followed by reviewing a type of technique found to decrease bacterial resistance, in the literature review part. It is not in detail, but covers some about b-lactam antibiotic and techniques that overcome the problem of bacterial resistance. Finally, a discussion and the result will be presented to answer the asked question and the conclusion summarizes the reasons why antibiotic resistance is very critical

Destekleyen Kurum

atilim university

Proje Numarası

1

Teşekkür

for D.NERGIZ

Kaynakça

  • (1) Mira, P. M. (2018). Understanding the impacts of sub-inhibitory concentrations and clinical use of beta-lactam antibiotics on the evolution of beta-lactamase resistance genes (Order No. 10816144). Available from ProQuest Dissertations & Theses Global. (2068051065). Retrieved from https://search.proquest.com/docview/2068051065?accountid=25087. (2) Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosisto resistance and bacteriology. Apmis, 2010. 118 (1): p. 1-36. (3) Pimenta, A.C., R. Fernandes, and I.S. Moreira, Evolution of Drug Resistance: Insight on TEM beta-Lactamases Structure and Activity and beta-Lactam Antibiotics. Mini-Reviews in Medicinal Chemistry, 2014. 14 (2): p. 111-122. (4) Shahada, F., et al., Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella Infantis isolated from broilers. Veterinary Microbiology, 2010. 140 (1-2): p. 136-141. (5) Abeylath, S.C. and E. Turos, Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opinion on Drug Delivery, 2008. 5 (9): p. 931-949. (6) Tomasz, A., "Intelligence coup" for drug designers: crystal structure of Staphylococcus aureus beta-lactam resistance protein PBP2A. Lancet, 2003. 361 (9360): p. 795-796. Ventola cl. The antibiotic resistance crisis: part 1: causes and threats PT 2015;40 (4): 277-83. (7) Ndugulile, F., et al., Extended Spectrum beta-Lactamases among Gram-negative bacteria of nosocomial origin from an Intensive Care Unit of a tertiary health facility in Tanzania. Bmc Infectious Diseases, 2005. 5. (8) Giamarellou, H., Multidrug resistance in gram-negative bacteria that produce extended-spectrum beta-lactamases (ESBLs). Clinical Microbiology and Infection, 2005. 11: p. 1-16. (9) goularCP, mahmudi M, crona KA, jacobs SD,Kallmann M, Hall BG, et al. designing antibiotic cycling strategies by detrmining and understanding local adeptive landscapes. PLos one. 2013 ;8 (2):e56040. (1) Mira, P. M. (2018). Understanding the impacts of sub-inhibitory concentrations and clinical use of beta-lactam antibiotics on the evolution of beta-lactamase resistance genes (Order No. 10816144). Available from ProQuest Dissertations & Theses Global. (2068051065). Retrieved from https://search.proquest.com/docview/2068051065?accountid=25087. (2) Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosisto resistance and bacteriology. Apmis, 2010. 118 (1): p. 1-36. (3) Pimenta, A.C., R. Fernandes, and I.S. Moreira, Evolution of Drug Resistance: Insight on TEM beta-Lactamases Structure and Activity and beta-Lactam Antibiotics. Mini-Reviews in Medicinal Chemistry, 2014. 14 (2): p. 111-122. (4) Shahada, F., et al., Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella Infantis isolated from broilers. Veterinary Microbiology, 2010. 140 (1-2): p. 136-141. (5) Abeylath, S.C. and E. Turos, Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opinion on Drug Delivery, 2008. 5 (9): p. 931-949. (6) Tomasz, A., "Intelligence coup" for drug designers: crystal structure of Staphylococcus aureus beta-lactam resistance protein PBP2A. Lancet, 2003. 361 (9360): p. 795-796. Ventola cl. The antibiotic resistance crisis: part 1: causes and threats PT 2015;40 (4): 277-83. (7) Ndugulile, F., et al., Extended Spectrum beta-Lactamases among Gram-negative bacteria of nosocomial origin from an Intensive Care Unit of a tertiary health facility in Tanzania. Bmc Infectious Diseases, 2005. 5. (8) Giamarellou, H., Multidrug resistance in gram-negative bacteria that produce extended-spectrum beta-lactamases (ESBLs). Clinical Microbiology and Infection, 2005. 11: p. 1-16. (9) goularCP, mahmudi M, crona KA, jacobs SD,Kallmann M, Hall BG, et al. designing antibiotic cycling strategies by detrmining and understanding local adeptive landscapes. PLos one. 2013 ;8 (2):e56040. (10) Shin, W. S. (2016). Combination antibacterial therapy against β-lactam drug resistance (Order No. 10155499). Available from ProQuest Dissertations & Theses Global. (1817632347). Retrieved from https://search.proquest.com/docview/1817632347?accountid=25087. (11) Drawz, S.M. And R.A. Bonomo, Three Decades of beta-Lactamase Inhibitors Clinical Microbiology Reviews, 2010. 23 (1): p. 160-+. (12) Aronson, J.K., Penicillins, cephalosporins, other beta-lactam antibiotics, and tetracyclines. Side Effects of Drugs Annual 34: A Worldwide Yearly Survey of New Data in Adverse Drug Reactions and Interactions, 2012. 34: p. 385-397. (13) Page, M.G.P., Beta-Lactam Antibiotics. Antibiotic Discovery and Development, Vols 1 and 2, 2012: p. 79-117. (14) A. Cavallaro, S. Taheri, K. VasilevResponsive and “smart” antibacterial surfaces: common approaches and new developments Biointerphases, 9 (2014), p. 029005, 10.1116/1.4866697 Cross RefView Record in ScopusGoogle Scholar. (15) K. Vasilev, J. Cook, H.J. GriesserAntibacterial surfaces for biomedical devices Expert Rev. Med. Devices, 6 (2009), pp. 553-567 CrossRefView Record in ScopusGoogle Scholar. (16) K. Vasilev, V. Sah, K. Anselme, C. Ndi, M. Mateescu, B. Dollmann, et al.Tunable antibacterial coatings that support mammalian cell growth Nano Lett., 10 (2010), pp. 202-207, CrossRefView Record in ScopusGoogle Scholar. (17) F. Siedenbiedel, J.C. TillerAntimicrobial polymers in solution and on surfaces: overview and functional principles Polymers, 4 (2012), pp. 46-71, 10.3390/polym4010046 CrossRefView Record in ScopusGoogle Scholar. (18) L. Timofeeva, N. KleshchevaAntimicrobial polymers: mechanism of action, factors of activity, and applications Appl. Microbiol. Biotechnol., 89 (2011), pp. 475-492, 10.1007/s00253-010-2920-9 CrossRefView Record in ScopusGoogle Scholar (19) K. Kuroda, G.A. CaputoAntimicrobial polymers as synthetic mimics of host-defense peptides (20) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5 (2013), pp. 49-66, 10.1002/wnan.1199 CrossRefView Record in ScopusGoogle Scholar. (21) R.J. Cornell, L.G. Donaruma2-Methacryloxytropones. intermediates for the synthesis of biologically active polymers J. Med. Chem., 8 (1965), pp. 388-390 CrossRefView Record in ScopusGoogle Scholar. (22) B. Dizman, M.O. Elasri, L.J. MathiasSynthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin Biomacromolecules, 6 (2005), pp. 514-520, 10.1021/bm049383 CrossRefView Record in ScopusGoogle Scholar. (23) M.C. Lawson, R. Shoemaker, K.B. Hoth, C.N. Bowman, K.S. AnsethPolymerizable vancomycin derivatives for bactericidal biomaterial surface modification: structure–function evaluation Biomacromolecules, 10 (2009), pp. 2221-2234, 10.1021/bm900410a CrossRefView Record in ScopusGoogle Scholar[162]. (24) V.E. Wagner, J.T. Koberstein, J.D. BryersProtein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers Biomaterials, 25 (2004), pp. 2247-2263 ArticleDownload PDFView Record in ScopusGoogle Scholar. (25) B. Gottenbos, H.C. van der Mei, F. Klatter, P. Nieuwenhuis, H.J.BusscherIn vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber Biomaterials, 23 (2002), pp. 1417-1423, 10.1016/S0142 9612(01)00263-0 ArticleDownload PDFView Record in ScopusGoogle Scholar[164]. (26) A.E. Madkour, J.M. Dabkowski, K. Nusslein, G.N. TewFast disinfecting antimicrobial surfaces Langmuir, 25 (2009), pp. 1060-1067, 10.1021/la802953v CrossRefView Record in ScopusGoogle Scholar. (27) L.G. Harris, S. Tosatti, M. Wieland, M. Textor, R.G. RichardsStaphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers Biomaterials, 25 (2004), pp. 4135-4148, 10.1016/j.biomaterials.2003.11.033 ArticleDownload PDFView Record in ScopusGoogle Scholar. (28) H.L. Tan, W.T. Lin, T.T. TangThe use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments Int. J. Artif. Organs, 35 (2012), pp. 832 839, 10.5301/ijao.5000163 View Record in ScopusGoogle Scholar Google Scholar. (29) A.E. Brooks, B.D. Brooks, S.N. Davidoff, P.C. Hogrebe, M.A. Fisher, D.W.GraingerPolymer-controlled release of tobramycin from bone graft void filler Drug Deliv. Transl. Res., 3 (2013), pp. 518 530, 10.1007/s13346-013-0155-x CrossRefView Record in ScopusGoogle Scholar. (30) B.D. Brooks, K.D. Sinclair, S.N. Davidoff, S. Lawson, A.G. Williams, B.Coats, et al.Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics J. Biomed. Mater. Res. B Appl. Biomater. (2013), 10.1002/jbm.b.33089 Google Scholar. (31) A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R.VenketesanBiogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria Nanomedicine, 6 (2010), pp. 103-109, 10.1016/j.nano.2009.04.006 ArticleDownload PDFView Record in ScopusGoogle Scholar (32) J.T. Seil, T.J. WebsterReduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces Acta Biomater., 7 (2011), pp. 2579-2584, 10.1016/j.actbio.2011.03.018 ArticleDownload PDFView Record in ScopusGoogle Scholar. (33) A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. MemicAntimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study Int. J. Nanomedicine, 7 (2012), pp. 6003-6009, 10.2147/IJN.S35347 CrossRefView Record in ScopusGoogle Scholar. (34) R.Y. Pelgrift, A.J. FriedmanNanotechnology as a therapeutic tool to combat microbial resistance Adv. Drug Deliv. Rev., 65 (2013), pp. 1803-1815, 10.1016/j.addr.2013.07.011 ArticleDownload PDFView Record in ScopusGoogle Scholar. (35) G.J. Gabriel, A. Som, A.E. Madkour, T. Eren, G.N. TewInfectious disease: connecting innate immunity to biocidal polymers Mater. Sci. Eng. R. Rep., 57 (2007), pp. 28-64, 10.1016/j.mser.2007.03.002 ArticleDownload PDFView Record in ScopusGoogle Scholar. (36) G.N. Tew, D. Clements, H. Tang, L. Arnt, R.W. ScottAntimicrobial activity of an abiotic host defense peptide mimic Biochim. Biophys. Acta, 1758 (2006), pp. 1387-1392, 10.1016/j.bbamem.2006.03.001 ArticleDownload PDFView Record in ScopusGoogle Scholar. (37) X. Ren, C. Zhu, L. Kou, S.D. Worley, H.B. Kocer, R.M. Broughton, et al.Acyclic N-halamine polymeric biocidal films J. Bioact. Compat. Polym., 25 (2010), pp. 392-405, 10.1177/0883911510370387 View Record in ScopusGoogle Scholar. (38) M. GorbunovaNovel guanidinium and phosphonium polysulfones: synthesis and antimicrobial activity J. Chem. Pharm. Res., 5 (2013), pp. 185-192 View Record in ScopusGoogle Scholar. (39) A.M. Carmona-Ribeiro, L.D. de Melo CarrascoCationic antimicrobial polymers and their assemblies Int. J. Mol. Sci., 14 (2013), pp. 9906-9946, 10.3390/ijms14059906 CrossRefView Record in ScopusGoogle Scholar. (40) L. Zhang, D. Pornpattananangkul, C.-M. Hu, C.-M. HuangDevelopment of nanoparticles for antimicrobial drug delivery Curr. Med. Chem., 17 (2010), pp. 585-594, 10.2174/092986710790416290 CrossRefView Record in ScopusGoogle Scholar. (41) F. Andrade, M. Videira, D. Ferreira, B. SarmentoMicelle-based systems for pulmonary drug delivery and targeting Drug Deliv. Lett., 1 (2011), pp. 171-185, 10.2174/2210304x11101020171 CrossRefView Record in ScopusGoogle Scholar (42) H. Pinto-Alphandary, A. Andremont, P. CouvreurTargeted delivery of antibiotics using liposomes and nanoparticles: research and applications Int. J. Antimicrob. Agents, 13 (2000), pp. 155-168 ArticleDownload PDFView Record in ScopusGoogle Scholar. (43) K.I. Wolska, K. Grześ, A. KurekSynergy between novel antimicrobials and conventional antibiotics or bacteriocins Pol. J. Microbiol., 61 (2012), pp. 95-104 View Record in ScopusGoogle Scholar. (44) E. Taylor, T.J. WebsterReducing infections through nanotechnology and Nanoparticles Int. J. Nanomedicine, 6 (2011), pp. 1463 1473, 10.2147/IJN.S22021 View Record in ScopusGoogle Scholar. (45) R.T. Tom, V. Suryanarayanan, P.G. Reddy, S. Baskaran, T. PradeepCiprofloxacin-protected gold Nanoparticles Langmuir, 20 (2004), pp. 1909-1914 CrossRefView Record in ScopusGoogle Scholar. (46) G. Burygin, B. Khlebtsov, A. Shantrokha, L. Dykman, V. Bogatyrev, N.KhlebtsovOn the enhanced antibacterial activity of antibiotics mixed with gold Nanoparticles Nanoscale Res. Lett., 4 (2009), pp. 794-801, 10.1007/s11671-009-9316-8 CrossRefView Record in ScopusGoogle Scholar. (47) H. Gu, P.L. Ho, E. Tong, L. Wang, B. XuPresenting vancomycin on nanoparticles to enhance antimicrobial activities Nano Lett., 3 (2003), pp. 1261-1263, 10.1021/nl034396z CrossRefView Record in ScopusGoogle Scholar. (48) R. Duncan, R. GasparNanomedicine(s) under the microscope Mol. Pharm., 8 (2011), pp. 2101-2141, 10.1021/mp200394t CrossRefView Record in ScopusGoogle Scholar (49) C. Jones, D.W. GraingerIn vitro assessments of nanomaterial toxicity Adv. Drug Deliv. Rev., 61 (2009), pp. 438-456, 10.1016/j.addr.2009.03.005 ArticleDownload PDFView Record in ScopusGoogle Scholar. (50) M. Alhariri, A. Azghani, A. OmriLiposomal antibiotics for the treatment of infectious diseases Expert Opin. Drug Deliv., 10 (2013), pp. 1515-1532, 10.1517/17425247.2013.822860 CrossRefView Record in ScopusGoogle Scholar. (51) Z. Drulis-Kawa, A. Dorotkiewicz-JachLiposomes as delivery systems for antibiotics Int. J. Pharm., 387 (2010), pp. 187-198, 10.1016/j.ijpharm.2009.11.033 ArticleDownload PDFView Record in ScopusGoogle Scholar. (52) F. Andrade, D. Rafael, M. Videira, D. Ferreira, A. Sosnik, B. SarmentoNanotechnology and pulmonary delivery to overcome resistance in infectious diseases Adv. Drug Deliv. Rev., 65 (2013), pp. 1816-1827, 10.1016/j.addr.2013.07.020 ArticleDownload PDFView Record in ScopusGoogle Scholar. (53) Journal of International Medical Research 2002; 30 (Suppl 1): 10A – 19A. Robert Y. Pelgrift, Adam J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Advanced Drug Delivery Reviews, Volume 65, Issues 13–14, 2013, Pages 1803-1815, ISSN 0169 409X,https://doi.org/10.1016/j.addr.2013.07.011. (http://www.sciencedirect.com/science/article/pii/0169409X13001658). (54) Ching-Wen Chen, Chia-Yen Hsu, Syu-Ming Lai, Wei-Jhe Syu, Ting-Yi Wang, Ping-Shan Lai, Metal nanobullets for multidrug resistant bacteria and biofilms, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 88-104, ISSN 0169409X, https://doi.org/10.1016/j.addr.2014.08.004. (http://www.sciencedirect.com/science/article/pii/S0169409X14001707). (55) Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics, Advanced Drug Delivery Reviews, Volumes 136–137, 2018, Pages 28-48, ISSN0169-409Xhttps://doi.org/10.1016/j.addr.2017.12.010. (http://www.sciencedirect.com/science/article/pii/S0169409X17303137). (56) Santos, R. S., Figueiredo, C., Azevedo, N. F., Braeckmans, K., & De Smedt, S. C. (2018,November1). Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Advanced Drug Delivery Reviews. Elsevier B.V. https://doi.org/10.1016/j.addr.2017.12.010. (57) Meng-Hua Xiong, Yan Bao, Xian-Zhu Yang, Yan-Hua Zhu, Jun Wang, Delivery of antibiotics with polymeric particles, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 63-76, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.02.002. (http://www.sciencedirect.com/science/article/pii/S0169409X14000246). (58) Nicholas D. Stebbins, Michelle A. Ouimet, Kathryn E. Uhrich, Antibiotic-containing polymers for localized, sustained drug delivery, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 77-87, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.04.006. (http://www.sciencedirect.com/science/article/pii/S0169409X14000817). (59) Benjamin D. Brooks, Amanda E. Brooks, Therapeutic strategies to combat antibiotic resistance, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 14-27, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.10.027. (http://www.sciencedirect.com/science/article/pii/S0169409X1400235X). (60) Sarah S. Tang, Anucha Apisarnthanarak, Li Yang Hsu,Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria, Advanced Drug Delivery Reviews, Volume 78,2014,Pages 3-13,ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.08.003. (http://www.sciencedirect.com/science/article/pii/S0169409X14001690).
Yıl 2019, Cilt: 5 Sayı: 2, 23 - 35, 17.07.2019

Öz

Proje Numarası

1

Kaynakça

  • (1) Mira, P. M. (2018). Understanding the impacts of sub-inhibitory concentrations and clinical use of beta-lactam antibiotics on the evolution of beta-lactamase resistance genes (Order No. 10816144). Available from ProQuest Dissertations & Theses Global. (2068051065). Retrieved from https://search.proquest.com/docview/2068051065?accountid=25087. (2) Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosisto resistance and bacteriology. Apmis, 2010. 118 (1): p. 1-36. (3) Pimenta, A.C., R. Fernandes, and I.S. Moreira, Evolution of Drug Resistance: Insight on TEM beta-Lactamases Structure and Activity and beta-Lactam Antibiotics. Mini-Reviews in Medicinal Chemistry, 2014. 14 (2): p. 111-122. (4) Shahada, F., et al., Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella Infantis isolated from broilers. Veterinary Microbiology, 2010. 140 (1-2): p. 136-141. (5) Abeylath, S.C. and E. Turos, Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opinion on Drug Delivery, 2008. 5 (9): p. 931-949. (6) Tomasz, A., "Intelligence coup" for drug designers: crystal structure of Staphylococcus aureus beta-lactam resistance protein PBP2A. Lancet, 2003. 361 (9360): p. 795-796. Ventola cl. The antibiotic resistance crisis: part 1: causes and threats PT 2015;40 (4): 277-83. (7) Ndugulile, F., et al., Extended Spectrum beta-Lactamases among Gram-negative bacteria of nosocomial origin from an Intensive Care Unit of a tertiary health facility in Tanzania. Bmc Infectious Diseases, 2005. 5. (8) Giamarellou, H., Multidrug resistance in gram-negative bacteria that produce extended-spectrum beta-lactamases (ESBLs). Clinical Microbiology and Infection, 2005. 11: p. 1-16. (9) goularCP, mahmudi M, crona KA, jacobs SD,Kallmann M, Hall BG, et al. designing antibiotic cycling strategies by detrmining and understanding local adeptive landscapes. PLos one. 2013 ;8 (2):e56040. (1) Mira, P. M. (2018). Understanding the impacts of sub-inhibitory concentrations and clinical use of beta-lactam antibiotics on the evolution of beta-lactamase resistance genes (Order No. 10816144). Available from ProQuest Dissertations & Theses Global. (2068051065). Retrieved from https://search.proquest.com/docview/2068051065?accountid=25087. (2) Kong, K.F., L. Schneper, and K. Mathee, Beta-lactam antibiotics: from antibiosisto resistance and bacteriology. Apmis, 2010. 118 (1): p. 1-36. (3) Pimenta, A.C., R. Fernandes, and I.S. Moreira, Evolution of Drug Resistance: Insight on TEM beta-Lactamases Structure and Activity and beta-Lactam Antibiotics. Mini-Reviews in Medicinal Chemistry, 2014. 14 (2): p. 111-122. (4) Shahada, F., et al., Genetic analysis of multi-drug resistance and the clonal dissemination of beta-lactam resistance in Salmonella Infantis isolated from broilers. Veterinary Microbiology, 2010. 140 (1-2): p. 136-141. (5) Abeylath, S.C. and E. Turos, Drug delivery approaches to overcome bacterial resistance to beta-lactam antibiotics. Expert Opinion on Drug Delivery, 2008. 5 (9): p. 931-949. (6) Tomasz, A., "Intelligence coup" for drug designers: crystal structure of Staphylococcus aureus beta-lactam resistance protein PBP2A. Lancet, 2003. 361 (9360): p. 795-796. Ventola cl. The antibiotic resistance crisis: part 1: causes and threats PT 2015;40 (4): 277-83. (7) Ndugulile, F., et al., Extended Spectrum beta-Lactamases among Gram-negative bacteria of nosocomial origin from an Intensive Care Unit of a tertiary health facility in Tanzania. Bmc Infectious Diseases, 2005. 5. (8) Giamarellou, H., Multidrug resistance in gram-negative bacteria that produce extended-spectrum beta-lactamases (ESBLs). Clinical Microbiology and Infection, 2005. 11: p. 1-16. (9) goularCP, mahmudi M, crona KA, jacobs SD,Kallmann M, Hall BG, et al. designing antibiotic cycling strategies by detrmining and understanding local adeptive landscapes. PLos one. 2013 ;8 (2):e56040. (10) Shin, W. S. (2016). Combination antibacterial therapy against β-lactam drug resistance (Order No. 10155499). Available from ProQuest Dissertations & Theses Global. (1817632347). Retrieved from https://search.proquest.com/docview/1817632347?accountid=25087. (11) Drawz, S.M. And R.A. Bonomo, Three Decades of beta-Lactamase Inhibitors Clinical Microbiology Reviews, 2010. 23 (1): p. 160-+. (12) Aronson, J.K., Penicillins, cephalosporins, other beta-lactam antibiotics, and tetracyclines. Side Effects of Drugs Annual 34: A Worldwide Yearly Survey of New Data in Adverse Drug Reactions and Interactions, 2012. 34: p. 385-397. (13) Page, M.G.P., Beta-Lactam Antibiotics. Antibiotic Discovery and Development, Vols 1 and 2, 2012: p. 79-117. (14) A. Cavallaro, S. Taheri, K. VasilevResponsive and “smart” antibacterial surfaces: common approaches and new developments Biointerphases, 9 (2014), p. 029005, 10.1116/1.4866697 Cross RefView Record in ScopusGoogle Scholar. (15) K. Vasilev, J. Cook, H.J. GriesserAntibacterial surfaces for biomedical devices Expert Rev. Med. Devices, 6 (2009), pp. 553-567 CrossRefView Record in ScopusGoogle Scholar. (16) K. Vasilev, V. Sah, K. Anselme, C. Ndi, M. Mateescu, B. Dollmann, et al.Tunable antibacterial coatings that support mammalian cell growth Nano Lett., 10 (2010), pp. 202-207, CrossRefView Record in ScopusGoogle Scholar. (17) F. Siedenbiedel, J.C. TillerAntimicrobial polymers in solution and on surfaces: overview and functional principles Polymers, 4 (2012), pp. 46-71, 10.3390/polym4010046 CrossRefView Record in ScopusGoogle Scholar. (18) L. Timofeeva, N. KleshchevaAntimicrobial polymers: mechanism of action, factors of activity, and applications Appl. Microbiol. Biotechnol., 89 (2011), pp. 475-492, 10.1007/s00253-010-2920-9 CrossRefView Record in ScopusGoogle Scholar (19) K. Kuroda, G.A. CaputoAntimicrobial polymers as synthetic mimics of host-defense peptides (20) Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5 (2013), pp. 49-66, 10.1002/wnan.1199 CrossRefView Record in ScopusGoogle Scholar. (21) R.J. Cornell, L.G. Donaruma2-Methacryloxytropones. intermediates for the synthesis of biologically active polymers J. Med. Chem., 8 (1965), pp. 388-390 CrossRefView Record in ScopusGoogle Scholar. (22) B. Dizman, M.O. Elasri, L.J. MathiasSynthesis, characterization, and antibacterial activities of novel methacrylate polymers containing norfloxacin Biomacromolecules, 6 (2005), pp. 514-520, 10.1021/bm049383 CrossRefView Record in ScopusGoogle Scholar. (23) M.C. Lawson, R. Shoemaker, K.B. Hoth, C.N. Bowman, K.S. AnsethPolymerizable vancomycin derivatives for bactericidal biomaterial surface modification: structure–function evaluation Biomacromolecules, 10 (2009), pp. 2221-2234, 10.1021/bm900410a CrossRefView Record in ScopusGoogle Scholar[162]. (24) V.E. Wagner, J.T. Koberstein, J.D. BryersProtein and bacterial fouling characteristics of peptide and antibody decorated surfaces of PEG-poly(acrylic acid) co-polymers Biomaterials, 25 (2004), pp. 2247-2263 ArticleDownload PDFView Record in ScopusGoogle Scholar. (25) B. Gottenbos, H.C. van der Mei, F. Klatter, P. Nieuwenhuis, H.J.BusscherIn vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber Biomaterials, 23 (2002), pp. 1417-1423, 10.1016/S0142 9612(01)00263-0 ArticleDownload PDFView Record in ScopusGoogle Scholar[164]. (26) A.E. Madkour, J.M. Dabkowski, K. Nusslein, G.N. TewFast disinfecting antimicrobial surfaces Langmuir, 25 (2009), pp. 1060-1067, 10.1021/la802953v CrossRefView Record in ScopusGoogle Scholar. (27) L.G. Harris, S. Tosatti, M. Wieland, M. Textor, R.G. RichardsStaphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers Biomaterials, 25 (2004), pp. 4135-4148, 10.1016/j.biomaterials.2003.11.033 ArticleDownload PDFView Record in ScopusGoogle Scholar. (28) H.L. Tan, W.T. Lin, T.T. TangThe use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments Int. J. Artif. Organs, 35 (2012), pp. 832 839, 10.5301/ijao.5000163 View Record in ScopusGoogle Scholar Google Scholar. (29) A.E. Brooks, B.D. Brooks, S.N. Davidoff, P.C. Hogrebe, M.A. Fisher, D.W.GraingerPolymer-controlled release of tobramycin from bone graft void filler Drug Deliv. Transl. Res., 3 (2013), pp. 518 530, 10.1007/s13346-013-0155-x CrossRefView Record in ScopusGoogle Scholar. (30) B.D. Brooks, K.D. Sinclair, S.N. Davidoff, S. Lawson, A.G. Williams, B.Coats, et al.Molded polymer-coated composite bone void filler improves tobramycin controlled release kinetics J. Biomed. Mater. Res. B Appl. Biomater. (2013), 10.1002/jbm.b.33089 Google Scholar. (31) A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R.VenketesanBiogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria Nanomedicine, 6 (2010), pp. 103-109, 10.1016/j.nano.2009.04.006 ArticleDownload PDFView Record in ScopusGoogle Scholar (32) J.T. Seil, T.J. WebsterReduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces Acta Biomater., 7 (2011), pp. 2579-2584, 10.1016/j.actbio.2011.03.018 ArticleDownload PDFView Record in ScopusGoogle Scholar. (33) A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. MemicAntimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study Int. J. Nanomedicine, 7 (2012), pp. 6003-6009, 10.2147/IJN.S35347 CrossRefView Record in ScopusGoogle Scholar. (34) R.Y. Pelgrift, A.J. FriedmanNanotechnology as a therapeutic tool to combat microbial resistance Adv. Drug Deliv. Rev., 65 (2013), pp. 1803-1815, 10.1016/j.addr.2013.07.011 ArticleDownload PDFView Record in ScopusGoogle Scholar. (35) G.J. Gabriel, A. Som, A.E. Madkour, T. Eren, G.N. TewInfectious disease: connecting innate immunity to biocidal polymers Mater. Sci. Eng. R. Rep., 57 (2007), pp. 28-64, 10.1016/j.mser.2007.03.002 ArticleDownload PDFView Record in ScopusGoogle Scholar. (36) G.N. Tew, D. Clements, H. Tang, L. Arnt, R.W. ScottAntimicrobial activity of an abiotic host defense peptide mimic Biochim. Biophys. Acta, 1758 (2006), pp. 1387-1392, 10.1016/j.bbamem.2006.03.001 ArticleDownload PDFView Record in ScopusGoogle Scholar. (37) X. Ren, C. Zhu, L. Kou, S.D. Worley, H.B. Kocer, R.M. Broughton, et al.Acyclic N-halamine polymeric biocidal films J. Bioact. Compat. Polym., 25 (2010), pp. 392-405, 10.1177/0883911510370387 View Record in ScopusGoogle Scholar. (38) M. GorbunovaNovel guanidinium and phosphonium polysulfones: synthesis and antimicrobial activity J. Chem. Pharm. Res., 5 (2013), pp. 185-192 View Record in ScopusGoogle Scholar. (39) A.M. Carmona-Ribeiro, L.D. de Melo CarrascoCationic antimicrobial polymers and their assemblies Int. J. Mol. Sci., 14 (2013), pp. 9906-9946, 10.3390/ijms14059906 CrossRefView Record in ScopusGoogle Scholar. (40) L. Zhang, D. Pornpattananangkul, C.-M. Hu, C.-M. HuangDevelopment of nanoparticles for antimicrobial drug delivery Curr. Med. Chem., 17 (2010), pp. 585-594, 10.2174/092986710790416290 CrossRefView Record in ScopusGoogle Scholar. (41) F. Andrade, M. Videira, D. Ferreira, B. SarmentoMicelle-based systems for pulmonary drug delivery and targeting Drug Deliv. Lett., 1 (2011), pp. 171-185, 10.2174/2210304x11101020171 CrossRefView Record in ScopusGoogle Scholar (42) H. Pinto-Alphandary, A. Andremont, P. CouvreurTargeted delivery of antibiotics using liposomes and nanoparticles: research and applications Int. J. Antimicrob. Agents, 13 (2000), pp. 155-168 ArticleDownload PDFView Record in ScopusGoogle Scholar. (43) K.I. Wolska, K. Grześ, A. KurekSynergy between novel antimicrobials and conventional antibiotics or bacteriocins Pol. J. Microbiol., 61 (2012), pp. 95-104 View Record in ScopusGoogle Scholar. (44) E. Taylor, T.J. WebsterReducing infections through nanotechnology and Nanoparticles Int. J. Nanomedicine, 6 (2011), pp. 1463 1473, 10.2147/IJN.S22021 View Record in ScopusGoogle Scholar. (45) R.T. Tom, V. Suryanarayanan, P.G. Reddy, S. Baskaran, T. PradeepCiprofloxacin-protected gold Nanoparticles Langmuir, 20 (2004), pp. 1909-1914 CrossRefView Record in ScopusGoogle Scholar. (46) G. Burygin, B. Khlebtsov, A. Shantrokha, L. Dykman, V. Bogatyrev, N.KhlebtsovOn the enhanced antibacterial activity of antibiotics mixed with gold Nanoparticles Nanoscale Res. Lett., 4 (2009), pp. 794-801, 10.1007/s11671-009-9316-8 CrossRefView Record in ScopusGoogle Scholar. (47) H. Gu, P.L. Ho, E. Tong, L. Wang, B. XuPresenting vancomycin on nanoparticles to enhance antimicrobial activities Nano Lett., 3 (2003), pp. 1261-1263, 10.1021/nl034396z CrossRefView Record in ScopusGoogle Scholar. (48) R. Duncan, R. GasparNanomedicine(s) under the microscope Mol. Pharm., 8 (2011), pp. 2101-2141, 10.1021/mp200394t CrossRefView Record in ScopusGoogle Scholar (49) C. Jones, D.W. GraingerIn vitro assessments of nanomaterial toxicity Adv. Drug Deliv. Rev., 61 (2009), pp. 438-456, 10.1016/j.addr.2009.03.005 ArticleDownload PDFView Record in ScopusGoogle Scholar. (50) M. Alhariri, A. Azghani, A. OmriLiposomal antibiotics for the treatment of infectious diseases Expert Opin. Drug Deliv., 10 (2013), pp. 1515-1532, 10.1517/17425247.2013.822860 CrossRefView Record in ScopusGoogle Scholar. (51) Z. Drulis-Kawa, A. Dorotkiewicz-JachLiposomes as delivery systems for antibiotics Int. J. Pharm., 387 (2010), pp. 187-198, 10.1016/j.ijpharm.2009.11.033 ArticleDownload PDFView Record in ScopusGoogle Scholar. (52) F. Andrade, D. Rafael, M. Videira, D. Ferreira, A. Sosnik, B. SarmentoNanotechnology and pulmonary delivery to overcome resistance in infectious diseases Adv. Drug Deliv. Rev., 65 (2013), pp. 1816-1827, 10.1016/j.addr.2013.07.020 ArticleDownload PDFView Record in ScopusGoogle Scholar. (53) Journal of International Medical Research 2002; 30 (Suppl 1): 10A – 19A. Robert Y. Pelgrift, Adam J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance, Advanced Drug Delivery Reviews, Volume 65, Issues 13–14, 2013, Pages 1803-1815, ISSN 0169 409X,https://doi.org/10.1016/j.addr.2013.07.011. (http://www.sciencedirect.com/science/article/pii/0169409X13001658). (54) Ching-Wen Chen, Chia-Yen Hsu, Syu-Ming Lai, Wei-Jhe Syu, Ting-Yi Wang, Ping-Shan Lai, Metal nanobullets for multidrug resistant bacteria and biofilms, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 88-104, ISSN 0169409X, https://doi.org/10.1016/j.addr.2014.08.004. (http://www.sciencedirect.com/science/article/pii/S0169409X14001707). (55) Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics, Advanced Drug Delivery Reviews, Volumes 136–137, 2018, Pages 28-48, ISSN0169-409Xhttps://doi.org/10.1016/j.addr.2017.12.010. (http://www.sciencedirect.com/science/article/pii/S0169409X17303137). (56) Santos, R. S., Figueiredo, C., Azevedo, N. F., Braeckmans, K., & De Smedt, S. C. (2018,November1). Nanomaterials and molecular transporters to overcome the bacterial envelope barrier: Towards advanced delivery of antibiotics. Advanced Drug Delivery Reviews. Elsevier B.V. https://doi.org/10.1016/j.addr.2017.12.010. (57) Meng-Hua Xiong, Yan Bao, Xian-Zhu Yang, Yan-Hua Zhu, Jun Wang, Delivery of antibiotics with polymeric particles, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 63-76, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.02.002. (http://www.sciencedirect.com/science/article/pii/S0169409X14000246). (58) Nicholas D. Stebbins, Michelle A. Ouimet, Kathryn E. Uhrich, Antibiotic-containing polymers for localized, sustained drug delivery, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 77-87, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.04.006. (http://www.sciencedirect.com/science/article/pii/S0169409X14000817). (59) Benjamin D. Brooks, Amanda E. Brooks, Therapeutic strategies to combat antibiotic resistance, Advanced Drug Delivery Reviews, Volume 78, 2014, Pages 14-27, ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.10.027. (http://www.sciencedirect.com/science/article/pii/S0169409X1400235X). (60) Sarah S. Tang, Anucha Apisarnthanarak, Li Yang Hsu,Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria, Advanced Drug Delivery Reviews, Volume 78,2014,Pages 3-13,ISSN 0169-409X, https://doi.org/10.1016/j.addr.2014.08.003. (http://www.sciencedirect.com/science/article/pii/S0169409X14001690).
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Rihab Fouzy Alfalah

Proje Numarası 1
Yayımlanma Tarihi 17 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 2

Kaynak Göster

APA Alfalah, R. F. (2019). A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC. Sanitas Magisterium, 5(2), 23-35.
AMA Alfalah RF. A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC. Sanitas magisterium. Temmuz 2019;5(2):23-35.
Chicago Alfalah, Rihab Fouzy. “A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC”. Sanitas Magisterium 5, sy. 2 (Temmuz 2019): 23-35.
EndNote Alfalah RF (01 Temmuz 2019) A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC. Sanitas Magisterium 5 2 23–35.
IEEE R. F. Alfalah, “A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC”, Sanitas magisterium, c. 5, sy. 2, ss. 23–35, 2019.
ISNAD Alfalah, Rihab Fouzy. “A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC”. Sanitas Magisterium 5/2 (Temmuz 2019), 23-35.
JAMA Alfalah RF. A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC. Sanitas magisterium. 2019;5:23–35.
MLA Alfalah, Rihab Fouzy. “A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC”. Sanitas Magisterium, c. 5, sy. 2, 2019, ss. 23-35.
Vancouver Alfalah RF. A SYSTEMATIC STUDY OF Β -LACTAM ANTIBIOTIC. Sanitas magisterium. 2019;5(2):23-35.

https://dergipark.org.tr/tr/download/journal-file/2143321433