Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Sheep Manure and Di-ammonium Phosphate on Soybean Growth, Photosynthesis, and Yield under Parwan Agro-climatic Conditions, Afghanistan

Yıl 2025, Cilt: 8 Sayı: 3, 163 - 177, 23.12.2025
https://doi.org/10.38001/ijlsb.1695199

Öz

Climate change, with its rising summer temperatures, colder winters, and erratic rainfall, is severely impacting calcareous soils in arid and semi-arid regions, leading to escalating nitrogen and phosphorus deficiencies. Limited studies investigated the effects of sheep manure (SM) and di-ammonium phosphate (DAP) on soybeans under calcareous soils. In this study, the fertilizer treatments (FT) were FT1 (SM = 0%, DAP= 0%), FT2 (SM= 100%, DAP= 0%), FT3 (SM = 0%, DAP= 100%), FT4 (SM = 50%, DAP= 75%), FT5 (SM = 50%, DAP= 50%), and FT6 (SM = 50%, DAP= 0%) elucidated on attributes of soybean cv. LD 04-13265 USD under calcareous soil conditions. The FT4 and FT5 treatments, combining sheep manure (SM) and di-ammonium phosphate (DAP), significantly enhanced net photo-synthetic rate, stomatal conductance, transpiration rate, and water use efficiency com-pared to the control (FT1). While all fertilization treatments resulted in lower intercellular CO2 concentrations than the control, the combined applications of SM and DAP (FT4 and FT5) demonstrated superior growth performance, higher photosynthetic efficiency, and increased seed yield. Although plant height and nodule number remained unaffected by fertilization, other growth parameters, including leaf number, root length, and shoot biomass, were significantly influenced. There was a positive correlation between seed yield and root length (r = 0.90), photosynthetic rate (r = 0.86), shoot biomass (r = 0.82), and water use efficiency (r = 0.76). Furthermore, the FT4 and FT5 treatments showed the highest seed yields, increasing by 81.3% and 64.3%, respectively, compared to their control. The combined use of sheep manure and DAP significantly contributes to high soybean yields, offering an eco-friendly alternative to the excessive use of chemical fertilizers and increasing the income of soybean crop producers.

Kaynakça

  • References
  • 1. Husein, H., et al., Spatial Distribution of Soil Organic Matter and Soil Organic Carbon Stocks in Semi-Arid Area of Northeastern Syria. Nat Resour, 2019. 10(12): p 415. https://doi.org/10.4236/nr.2019.1012028.
  • 2. Hag Husein, H., et al., A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands. Soil Syst 2021. 5(3): p 42. https://doi.org/10.3399/soilsystems5030042.
  • 3. Department of Statistics (DOS),. 2020. Ministry of Agriculture Irrigation and Livestock. Available online: http://mail.gov.af/en: (accessed on 12 April 2023).
  • 4. Habibi, S., et al., Genetic characterization of soybean rhizobia isolated from different ecological zones in north-eastern Afghanistan. Microbes Environ, 2017. 32(1): p71. https://doi.org/10.1264/jsme2.ME16119.
  • 5. Zhao, D.R., Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 2003. 257 (1): p. 205–217. https://doi.org/10.1023/A:1026233732507.
  • 6. Zhao, D., et al., Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron, 2005. 22(4): p 391–403. https://doi.org/10.1016/.eja.2004.06.005.
  • 7. MacDonald, G., et al., Agronomic phosphorus imbalances across the world’s croplands. J Exp Bot, 2011. 108(7): p3086–3091. https://doi.org/10.1073/pnas.1010808108.
  • 8. Neocleous, D. and D. Savvas, The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci Hortic, 2019. 252(2): p 379–387. https://doi.org/10.1016/j.scienta.2019.04.007.
  • 9. Kayoumu, M., et al., Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. Antioxidants, 2023.12(2):p466. https://doi.org/10.3390/antiox12020466.
  • 10. Scotti, R., et al., Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr, 2015. 15: p 333–352. https://doi.org/10.4067/S0718-95162015005000031.
  • 11. Younis, S., et al., Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew Sust Energy Rev, 2021. 152: p 111686. https://doi.org/10.1016/j.rser.2021111686.
  • 12. Ramalakshmi, CS., et al., Nitrogen Use Efficiency and Production Efficiency of Rice under Rice-Pulse Cropping System with Integrated Nutrient Management. J Rice Res, 2012. 5(1 and 2): p 42-51.
  • 13. Zadeh, A., Effects of Chemical and Biological Fertilizer on Yield and Nitrogen Uptake of Rice. J Biodivers Environ Sci, 2014. 4(2):37-46.
  • 14. Chatzistathis, T., et al., Comparative study effects between manure application and a controlled release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci Hortic, 2020. 264: p 109176. https://doi.org/10.1016/j.scienta.2020.109146.
  • 15. Adeoye, GO., Evaluation of Potential of Co-Compost of Rice-Wastes, Cowdung and Poultry Manure for Production of Rice. Proceedings of the 29th Annual Conference of the Soil Science Society of Nigeria. Abeokuta-Nigeria. 6-10 december 2004. p 213-218.
  • 16. Ashraf, M.N., et al., Soil microbial biomass and extracellular enzyme–mediated mineralization potentials of carbon and nitrogen under long-term fertilization (>30 years) in a rice–rice cropping system. J Soils Sediments, 2021). 21(12): p 3789–3800. https://doi.org/10.1007/S11368-021-03048-0.
  • 17. Bi, Q., et al., Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ, 2020. 703: p 134977. https://doi.org/10.1016/j.scitotenv.2019.1349.
  • 18. Ghosal, P.K. and T. Chakraborty, Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resour Environ, 2012. 2(4): p 175–179. https://doi.org/10.5923/j.re.20120204.07.
  • 19. Herawati, N., A.R. Aisah and B.N. Hidayah, Photosynthate Accumulation and Distribution on Soybean Crop during Vegetative and Generative Phases Influenced by Phosphor and Organic Fertilizers. Proceedings of the 2nd International Conference on Bioscience, Biotechnology, and Biometrics, 2019. 2199(1): p040002. https://doi.org/10.1063/1.5141289.
  • 20. Bouyoucos, G.J., Hydrometer Method Improved for Making Particle Size Analysis of Soils. Agronomy Journal, 1962 (54): p 464-465. http://dx.doi.org/10.2134/agronj1962.00021962005400050028x
  • 21. Ministry of Agriculture, Irrigation and Livestock (MAIL), 2021. http://mail.gov.af/en: (accessed on 15 August 2022).
  • 22. Khan, M.S., et al., Combined Effect of Animal Manures and Diammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea. Agronomy, 2022. 12(3): p 674. https://doi.org/10.3390/agronomy12030674.
  • 23. Shenglan, Y. B. P., Effects of organic fertilizers on growth characteristics and fruit quality in Pear‐jujube in the Loess Plateau. Sci Rep Sci Rep, 2022. 12(1): p 13372. https://doi.org/10.1038/S41598-022-17342-5
  • 24. Amin, M.W., Sediqui, N., Azizi, A.H., Joya, K.; Amin, M.S., Mahmoodzada, A.B., Aryan, S., Suzuki, S., Irie, K., Mihara, M., Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring. AgriEngineering, 2025. 69 (7): p 1-25. https://doi.org/10.3390/agriengineering7030069
  • 25. Gill, H., et al., Phosphorus uptake and use efficiency invance different varieties of bread wheat (Triticum aestivum L). Arch Agron Soil Sci, 2004. 50(6): p 563–572. https://doi.org/10.1080/03650340410001729708.
  • 26. Mohsin, Z., M. Abbasi, and A. Khaliq, Effect of combining organic materials with inorganic phosphorus sources on growth, yield, energy content and phosphorus uptake in maize at Rawalakot Azad Jammu and Kashmir. Pak Arch Appl Sci Res, 2011. 3(2): p 199–212. https://doi.org/10.1080/01904167.2013.819892.
  • 27. Seleiman, M. and M. Abdelaal, Effect of organic, inorganic and bio fertilization on growth, yield and quality traits of some chickpea (Cicer arietinum L.) varieties. Egypt J Agron, 2018. 40(1): p 105–117. https://doi.org/10.21608/agro.2018.2869.1039.
  • 28. Devi, K.N., et al., Response of Soybean [Glycine max (L.) Merrill] to Sources and Levels of Phosphorus. J Agric Sci, 2012. 4(6): p 44-53. https://doi.org/10.5539/jas.v4n6p44.
  • 29. Kucey, R.M.N., H.H. Janzen, and M.E. Legget, Microbial mediated increases in plant available phosphorus. Adv Agron, 1989. 42: p 199-228. https://doi.org/10.1016/S0065-2113(08)60525-8.
  • 30. Ponmurugan, P., and C. Gopi, Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and storage crops. J Agron, 2006. 5(4):p 600-604. https://doi.org/10.3923/ja.2006.600.604.
  • 31. Usmani, A.A., S.N. Naderi, and K. Amini, Growth and yield response of soybean to manure and DAP-fertilizer under climatic conditions Kabul Province of Republic Afghanistan. Young Scientist, 2022. 17(412): p 146-151.
  • 32. Hati, K., et al., Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol, 2006. 97(16): 2182–2188. https://doi.org/10.1016/j.biortech.2005.09.033.
  • 33. Ismail, M., A. Moursy, and A. Mousa, Effect of organic and inorganic fertilizer on growth and yield of chickpea (Cicer arietinum L.) grown on sandy soil using 15N tracer. Bangl J Bot, 2017. 46(1): p 155–161.
  • 34. Balemi, T., Effect of integrated use of cattle manure and inorganic fertilizers on tuber yield of potato in Ethiopia. J Soil Sci Plant Nutr, 2012. 12(2): p 253–261. https://doi.org/10.4067/s0718-95162012000200005.
  • 35. Li, Y.L., Response of leaf photosynthesis and fruit quality to different organic fertilizer ratios Ziziphus jujube L. ‘Zhongqiu Sucui’. J Central South Univ For Technol, 2021. 41: p 45–51.
  • 36. Santos, E.F., et al., Unravelling homeostasis effects of phosphorus and zinc nutrition by leaf photochemistry and metabolic adjustment in cotton plants. Sci Rep, 2021. 11: p 13746. https://doi.org/10.1038/s41598-021-93396-1
  • 37. Lu, H., et al., Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ, 2023. 46: p 1104-1119. https://doi.org/10.1111/pce.14457.
  • 38. Yu, S.U., and H. Shaoli, Effects of bio-organic fertilizer on flue-cured tobacco photosynthetic characteristics and rhizosphere soil microorganism. J Agric Sci Technol, 2022. 24(1): p 164–171. https://doi.org/10.13304/j.nykjdb.2020.0731.
  • 39. Chen, G.C., Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration. Plant Physiol Commun, 2010. 46: p 64–66.
  • 40. Chatzistathis, T., et al., Independent or Combinational Application of Sheep Manure and Litter from Indigenous Field Vegetation of Quercus sp. Influences Nutrient Uptake, Photosynthesis, Intrinsic Water Use Efficiency, and Foliar Sugar Concentrations in Olive Plants. Appl Sci, 2023. 13(2): 1127. https://doi.org/10.3390/app13021127.
  • 41. Alkhader, A.M.F., A.M. Abu Rayyan, and M.J. Rusan, The effect of phosphorus fertilizers on the growth and quality of lettuce (Lactuca sativa L.) under greenhouse and field conditions. SpringerPlus, 2013.2: p 563. https://doi.org/10.1186/2193-1801-2-563.
  • 42. Iqbal, M.A., et al., Integrated Fertilizers Synergistically Bolster temperate soybean Growth, Yield and Oil Content. Sustainability, 2022. 14(4): p 2433. https://doi.org/10.3390/su14042433.
  • 43. Arjumand Banu, S.S., N.B. Ananth, and E.T. Puttaiah, Effectiveness of farmyard manure, poultry manure and fertilizer–NPK on the growth parameters of French bean (Phaseolus vulgaris L.) in Shimoga, Karnataka. Global J Curr Res, 2013. 1(1): p 31-35. https://doi.org/10.13140/RG.2.2.36543.23204.
  • 44. Meseret, T., and M. Amin, Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World J Agric Res, 2014. 2(3): p 88-92. https://doi.org/10.12691/wjar-2-3-1.
  • 45. Kumawat, N., O.P. Sharma, and R. Kumar, Effect of Organic Manures, PSB and Phasphorus Fertilization on Yield and Economics of Mungbean Vigna radiata (L.) Wilczek. Environment and Ecology, 2009. 27(1): p 5-7

Parwan Tarımsal İklim Koşullarında Koyun Gübresi ve Diamonyum Fosfatın Soya Fasulyesi Büyümesi, Fotosentez ve Verimi Üzerindeki Etkileri, Afganistan

Yıl 2025, Cilt: 8 Sayı: 3, 163 - 177, 23.12.2025
https://doi.org/10.38001/ijlsb.1695199

Öz

Yükselen yaz sıcaklıkları, daha soğuk kışlar ve düzensiz yağışlarla iklim değişikliği, kurak ve yarı kurak bölgelerdeki kireçli toprakları ciddi şekilde etkileyerek azot ve fosfor eksikliklerinin artmasına yol açmaktadır. Sınırlı sayıda çalışma, koyun gübresinin (SM) ve di-amonyum fosfatın (DAP) kireçli topraklardaki soya fasulyesi üzerindeki etkilerini araştırmıştır. Bu çalışmada, gübre uygulamaları (FT) FT1 (SM = %0, DAP = %0), FT2 (SM = %100, DAP = %0), FT3 (SM = %0, DAP = %100), FT4 (SM = %50, DAP = %75), FT5 (SM = %50, DAP = %50) ve FT6 (SM = %50, DAP = %0) olup soya fasulyesi çeşidinin nitelikleri üzerinde açıklanmıştır. Kireçli toprak koşullarında LD 04-13265 USD. Koyun gübresi (SM) ve di-amonyum fosfat (DAP) kombinasyonundan oluşan FT4 ve FT5 uygulamaları, kontrol (FT1) ile karşılaştırıldığında net fotosentez oranını, stoma iletkenliğini, terleme oranını ve su kullanım verimliliğini önemli ölçüde artırdı. Tüm gübreleme uygulamaları kontrolden daha düşük hücreler arası CO2 konsantrasyonları ile sonuçlanırken, SM ve DAP'nin (FT4 ve FT5) kombine uygulamaları üstün büyüme performansı, daha yüksek fotosentez verimliliği ve artan tohum verimi gösterdi. Bitki boyu ve nodül sayısı gübrelemeden etkilenmemiş olsa da, yaprak sayısı, kök uzunluğu ve sürgün biyokütlesi gibi diğer büyüme parametreleri önemli ölçüde etkilendi. Tohum verimi ile kök uzunluğu (r = 0,90), fotosentez hızı (r = 0,86), sürgün biyokütlesi (r = 0,82) ve su kullanım verimliliği (r = 0,76) arasında pozitif bir korelasyon vardı. Ayrıca, FT4 ve FT5 uygulamaları, kontrollerine kıyasla sırasıyla %81,3 ve %64,3 oranında artarak en yüksek tohum verimini gösterdi. Koyun gübresi ve DAP'ın birlikte kullanımı, yüksek soya fasulyesi verimine önemli ölçüde katkıda bulunarak, kimyasal gübrelerin aşırı kullanımına çevre dostu bir alternatif sunuyor ve soya fasulyesi mahsulü üreticilerinin gelirini artırıyor.

Kaynakça

  • References
  • 1. Husein, H., et al., Spatial Distribution of Soil Organic Matter and Soil Organic Carbon Stocks in Semi-Arid Area of Northeastern Syria. Nat Resour, 2019. 10(12): p 415. https://doi.org/10.4236/nr.2019.1012028.
  • 2. Hag Husein, H., et al., A Contribution to Soil Fertility Assessment for Arid and Semi-Arid Lands. Soil Syst 2021. 5(3): p 42. https://doi.org/10.3399/soilsystems5030042.
  • 3. Department of Statistics (DOS),. 2020. Ministry of Agriculture Irrigation and Livestock. Available online: http://mail.gov.af/en: (accessed on 12 April 2023).
  • 4. Habibi, S., et al., Genetic characterization of soybean rhizobia isolated from different ecological zones in north-eastern Afghanistan. Microbes Environ, 2017. 32(1): p71. https://doi.org/10.1264/jsme2.ME16119.
  • 5. Zhao, D.R., Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 2003. 257 (1): p. 205–217. https://doi.org/10.1023/A:1026233732507.
  • 6. Zhao, D., et al., Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron, 2005. 22(4): p 391–403. https://doi.org/10.1016/.eja.2004.06.005.
  • 7. MacDonald, G., et al., Agronomic phosphorus imbalances across the world’s croplands. J Exp Bot, 2011. 108(7): p3086–3091. https://doi.org/10.1073/pnas.1010808108.
  • 8. Neocleous, D. and D. Savvas, The effects of phosphorus supply limitation on photosynthesis, biomass production, nutritional quality, and mineral nutrition in lettuce grown in a recirculating nutrient solution. Sci Hortic, 2019. 252(2): p 379–387. https://doi.org/10.1016/j.scienta.2019.04.007.
  • 9. Kayoumu, M., et al., Phosphorus Availability Affects the Photosynthesis and Antioxidant System of Contrasting Low-P-Tolerant Cotton Genotypes. Antioxidants, 2023.12(2):p466. https://doi.org/10.3390/antiox12020466.
  • 10. Scotti, R., et al., Organic amendments as sustainable tool to recovery fertility in intensive agricultural systems. J Soil Sci Plant Nutr, 2015. 15: p 333–352. https://doi.org/10.4067/S0718-95162015005000031.
  • 11. Younis, S., et al., Advancements of nanotechnologies in crop promotion and soil fertility: Benefits, life cycle assessment, and legislation policies. Renew Sust Energy Rev, 2021. 152: p 111686. https://doi.org/10.1016/j.rser.2021111686.
  • 12. Ramalakshmi, CS., et al., Nitrogen Use Efficiency and Production Efficiency of Rice under Rice-Pulse Cropping System with Integrated Nutrient Management. J Rice Res, 2012. 5(1 and 2): p 42-51.
  • 13. Zadeh, A., Effects of Chemical and Biological Fertilizer on Yield and Nitrogen Uptake of Rice. J Biodivers Environ Sci, 2014. 4(2):37-46.
  • 14. Chatzistathis, T., et al., Comparative study effects between manure application and a controlled release fertilizer on the growth, nutrient uptake, photosystem II activity and photosynthetic rate of Olea europaea L. (cv. ‘Koroneiki’). Sci Hortic, 2020. 264: p 109176. https://doi.org/10.1016/j.scienta.2020.109146.
  • 15. Adeoye, GO., Evaluation of Potential of Co-Compost of Rice-Wastes, Cowdung and Poultry Manure for Production of Rice. Proceedings of the 29th Annual Conference of the Soil Science Society of Nigeria. Abeokuta-Nigeria. 6-10 december 2004. p 213-218.
  • 16. Ashraf, M.N., et al., Soil microbial biomass and extracellular enzyme–mediated mineralization potentials of carbon and nitrogen under long-term fertilization (>30 years) in a rice–rice cropping system. J Soils Sediments, 2021). 21(12): p 3789–3800. https://doi.org/10.1007/S11368-021-03048-0.
  • 17. Bi, Q., et al., Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci Total Environ, 2020. 703: p 134977. https://doi.org/10.1016/j.scitotenv.2019.1349.
  • 18. Ghosal, P.K. and T. Chakraborty, Comparative solubility study of four phosphatic fertilizers in different solvents and the effect of soil. Resour Environ, 2012. 2(4): p 175–179. https://doi.org/10.5923/j.re.20120204.07.
  • 19. Herawati, N., A.R. Aisah and B.N. Hidayah, Photosynthate Accumulation and Distribution on Soybean Crop during Vegetative and Generative Phases Influenced by Phosphor and Organic Fertilizers. Proceedings of the 2nd International Conference on Bioscience, Biotechnology, and Biometrics, 2019. 2199(1): p040002. https://doi.org/10.1063/1.5141289.
  • 20. Bouyoucos, G.J., Hydrometer Method Improved for Making Particle Size Analysis of Soils. Agronomy Journal, 1962 (54): p 464-465. http://dx.doi.org/10.2134/agronj1962.00021962005400050028x
  • 21. Ministry of Agriculture, Irrigation and Livestock (MAIL), 2021. http://mail.gov.af/en: (accessed on 15 August 2022).
  • 22. Khan, M.S., et al., Combined Effect of Animal Manures and Diammonium Phosphate (DAP) on Growth, Physiology, Root Nodulation and Yield of Chickpea. Agronomy, 2022. 12(3): p 674. https://doi.org/10.3390/agronomy12030674.
  • 23. Shenglan, Y. B. P., Effects of organic fertilizers on growth characteristics and fruit quality in Pear‐jujube in the Loess Plateau. Sci Rep Sci Rep, 2022. 12(1): p 13372. https://doi.org/10.1038/S41598-022-17342-5
  • 24. Amin, M.W., Sediqui, N., Azizi, A.H., Joya, K.; Amin, M.S., Mahmoodzada, A.B., Aryan, S., Suzuki, S., Irie, K., Mihara, M., Impact of Soil Amendments and Alternate Wetting and Drying Irrigation on Growth, Physiology, and Yield of Deeper-Rooted Rice Cultivar Under Internet of Things-Based Soil Moisture Monitoring. AgriEngineering, 2025. 69 (7): p 1-25. https://doi.org/10.3390/agriengineering7030069
  • 25. Gill, H., et al., Phosphorus uptake and use efficiency invance different varieties of bread wheat (Triticum aestivum L). Arch Agron Soil Sci, 2004. 50(6): p 563–572. https://doi.org/10.1080/03650340410001729708.
  • 26. Mohsin, Z., M. Abbasi, and A. Khaliq, Effect of combining organic materials with inorganic phosphorus sources on growth, yield, energy content and phosphorus uptake in maize at Rawalakot Azad Jammu and Kashmir. Pak Arch Appl Sci Res, 2011. 3(2): p 199–212. https://doi.org/10.1080/01904167.2013.819892.
  • 27. Seleiman, M. and M. Abdelaal, Effect of organic, inorganic and bio fertilization on growth, yield and quality traits of some chickpea (Cicer arietinum L.) varieties. Egypt J Agron, 2018. 40(1): p 105–117. https://doi.org/10.21608/agro.2018.2869.1039.
  • 28. Devi, K.N., et al., Response of Soybean [Glycine max (L.) Merrill] to Sources and Levels of Phosphorus. J Agric Sci, 2012. 4(6): p 44-53. https://doi.org/10.5539/jas.v4n6p44.
  • 29. Kucey, R.M.N., H.H. Janzen, and M.E. Legget, Microbial mediated increases in plant available phosphorus. Adv Agron, 1989. 42: p 199-228. https://doi.org/10.1016/S0065-2113(08)60525-8.
  • 30. Ponmurugan, P., and C. Gopi, Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and storage crops. J Agron, 2006. 5(4):p 600-604. https://doi.org/10.3923/ja.2006.600.604.
  • 31. Usmani, A.A., S.N. Naderi, and K. Amini, Growth and yield response of soybean to manure and DAP-fertilizer under climatic conditions Kabul Province of Republic Afghanistan. Young Scientist, 2022. 17(412): p 146-151.
  • 32. Hati, K., et al., Effect of inorganic fertilizer and farmyard manure on soil physical properties, root distribution, and water-use efficiency of soybean in Vertisols of central India. Bioresour Technol, 2006. 97(16): 2182–2188. https://doi.org/10.1016/j.biortech.2005.09.033.
  • 33. Ismail, M., A. Moursy, and A. Mousa, Effect of organic and inorganic fertilizer on growth and yield of chickpea (Cicer arietinum L.) grown on sandy soil using 15N tracer. Bangl J Bot, 2017. 46(1): p 155–161.
  • 34. Balemi, T., Effect of integrated use of cattle manure and inorganic fertilizers on tuber yield of potato in Ethiopia. J Soil Sci Plant Nutr, 2012. 12(2): p 253–261. https://doi.org/10.4067/s0718-95162012000200005.
  • 35. Li, Y.L., Response of leaf photosynthesis and fruit quality to different organic fertilizer ratios Ziziphus jujube L. ‘Zhongqiu Sucui’. J Central South Univ For Technol, 2021. 41: p 45–51.
  • 36. Santos, E.F., et al., Unravelling homeostasis effects of phosphorus and zinc nutrition by leaf photochemistry and metabolic adjustment in cotton plants. Sci Rep, 2021. 11: p 13746. https://doi.org/10.1038/s41598-021-93396-1
  • 37. Lu, H., et al., Molecular mechanisms and genetic improvement of low-phosphorus tolerance in rice. Plant Cell Environ, 2023. 46: p 1104-1119. https://doi.org/10.1111/pce.14457.
  • 38. Yu, S.U., and H. Shaoli, Effects of bio-organic fertilizer on flue-cured tobacco photosynthetic characteristics and rhizosphere soil microorganism. J Agric Sci Technol, 2022. 24(1): p 164–171. https://doi.org/10.13304/j.nykjdb.2020.0731.
  • 39. Chen, G.C., Thinking about the relationship between net photosynthetic rate and intercellular CO2 concentration. Plant Physiol Commun, 2010. 46: p 64–66.
  • 40. Chatzistathis, T., et al., Independent or Combinational Application of Sheep Manure and Litter from Indigenous Field Vegetation of Quercus sp. Influences Nutrient Uptake, Photosynthesis, Intrinsic Water Use Efficiency, and Foliar Sugar Concentrations in Olive Plants. Appl Sci, 2023. 13(2): 1127. https://doi.org/10.3390/app13021127.
  • 41. Alkhader, A.M.F., A.M. Abu Rayyan, and M.J. Rusan, The effect of phosphorus fertilizers on the growth and quality of lettuce (Lactuca sativa L.) under greenhouse and field conditions. SpringerPlus, 2013.2: p 563. https://doi.org/10.1186/2193-1801-2-563.
  • 42. Iqbal, M.A., et al., Integrated Fertilizers Synergistically Bolster temperate soybean Growth, Yield and Oil Content. Sustainability, 2022. 14(4): p 2433. https://doi.org/10.3390/su14042433.
  • 43. Arjumand Banu, S.S., N.B. Ananth, and E.T. Puttaiah, Effectiveness of farmyard manure, poultry manure and fertilizer–NPK on the growth parameters of French bean (Phaseolus vulgaris L.) in Shimoga, Karnataka. Global J Curr Res, 2013. 1(1): p 31-35. https://doi.org/10.13140/RG.2.2.36543.23204.
  • 44. Meseret, T., and M. Amin, Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris L.). World J Agric Res, 2014. 2(3): p 88-92. https://doi.org/10.12691/wjar-2-3-1.
  • 45. Kumawat, N., O.P. Sharma, and R. Kumar, Effect of Organic Manures, PSB and Phasphorus Fertilization on Yield and Economics of Mungbean Vigna radiata (L.) Wilczek. Environment and Ecology, 2009. 27(1): p 5-7
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi, Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdul Alim Osmani Bu kişi benim 0009-0004-8294-3236

Mohammad Wasif Amin 0000-0003-2258-7749

Gönderilme Tarihi 8 Mayıs 2025
Kabul Tarihi 22 Ağustos 2025
Erken Görünüm Tarihi 15 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

EndNote Osmani AA, Amin MW (01 Aralık 2025) Effects of Sheep Manure and Di-ammonium Phosphate on Soybean Growth, Photosynthesis, and Yield under Parwan Agro-climatic Conditions, Afghanistan. International Journal of Life Sciences and Biotechnology 8 3 163–177.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366