Araştırma Makalesi
BibTex RIS Kaynak Göster

Ayçiçeği Gövde Çürüklüğüne Karşı Bazı Trichoderma Türlerinin Etkinliği

Yıl 2025, Cilt: 8 Sayı: 3, 187 - 198, 23.12.2025
https://doi.org/10.38001/ijlsb.1726941

Öz

Ayçiçeğinin en önemli hastalıkları arasında gövde çürüklüğü yer almaktadır. Bitki hastalıklarına karşı en yaygın kullanılan yöntem fungisit kullanımı olmasına rağmen, pestisitlerin insan sağlığı ve çevre üzerindeki olumsuz yan etkileri nedeniyle biyolojik mücadele önem kazanmıştır. Bu çalışmada; Trichoderma atroviride, T. hamatum, T. harzianum ve T. longibrachiatum'un ayçiçeğinde gövde çürüklüğüne neden olan Sclerotinia sclerotiorum, S. minor ve Macrophomina phaseolina'ya karşı in vitro ve in vivo etkinliği araştırılmıştır. İkili kültür testlerinde, T. atroviride ve T. hamatum'un patojenlerin miselyal gelişimi üzerinde daha yüksek engelleyici etkileri olduğu görülmüştür. Ancak in vivo çalışmalar, en düşük hastalık şiddeti oranlarının T. harzianum ve T. longibrachiatum tarafından M. phaseolina'ya, T. hamatum ve T. longibrachiatum tarafından S. minor'a karşı elde edildiğini, S. sclerotiorum'un ise T. harzianum tarafından daha etkili bir şekilde baskılandığını göstermiştir. Trichoderma uygulamalarının tamamı ayçiçeği bitkilerinin bazı büyüme parametrelerinde kontrol gruplarıyla karşılaştırıldığında artışa neden olmuştur. Benzer şekilde tüm uygulamalar bitkilerin toplam fenolik içeriklerinde kontrol gruplarıyla karşılaştırıldığında artışa sebep olmuştur. En yüksek toplam fenolik miktarları tüm uygulamalarda aşılamadan 48 saat sonra yapılan tahminlerde bulunmuştur. Antagonistik etkilerinin düzeyi patojenlere ve test koşullarına bağlı olarak değişse de, tüm Trichoderma türleri gövde çürüklüğü patojenlerini baskılamıştır. Trichoderma türleri ayrıca ayçiçeği bitkilerinin patojenlere karşı direnç mekanizmalarını harekete geçirmiş ve bitki büyümesini teşvik etmiştir. Sonuçların tarla denemeleriyle doğrulanmasının ardından ayçiçeği gövde çürüklüğü patojenlerine karşı çevre dostu alternatif kontrol ajanları olarak kullanılabilirler.

Proje Numarası

5004-YL1-17

Kaynakça

  • 1. FAOSAT. http://www.fao.org. 2023. Accessed 17 January 2025.
  • 2. Bozer, P., Agricultural Products Market, Sunflower. 2024, Agricultural Economics and Policy Development Institute / AEPDI, 2024. https://arastirma.tarimorman.gov.tr/ tepge/Menu/27/Tarim-Urunleri-Piyasalari.
  • 3. Gulya, T.J., Mathew F, Harveson R, Markell S, Block C. Diseases of sunflower. Handbook of Florists' crops diseases, handbook of plant disease management. Springer International Publishing, Cham, 2016. p. 1-20.
  • 4. Khan, N.S., Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology, 2007. 5 (2): p. 111-118. Doi: 10.1017/s0021859612000512
  • 5. Chen, Z., et al., Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis signaling pathways. Environmental Science and Pollution Research. 2022. 29 (25): p. 38097-38109. Doi: 10.1007/s11356-021-18125-7
  • 6. Tozlu, E. and E. Demirci, Incidence and characterization of sunflower stem rot disease caused by Sclerotinia sclerotiorum and S. minor in Pasinler Plain of Erzurum, and reaction of some sunflower cultivars to the pathogens. Plant Protection Bulletin. 2008. 48 (4): p. 19-33
  • 7. Mahmoud, A. and H. Budak, First report of charcoal rot caused by Macrophomina phaseolina in sunflower in Turkey. Plant Disease. 2011. 95 (2): p. 223 Doi: 1094/pdis-09-10-0631
  • 8. Cotuna, O., M. Paraschivu, and V. Sărățeanu, Charcoal rot of the sunflower roots and stems (Macrophomina phaseolina (Tassi) Goid.)-an overview. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2022.22(1): p. 107-116.
  • 9. Alengebawy, A., et al., Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxicology. 2021. 9 (3): p. 42. Doi: 10.3390/toxics9030042
  • 10. Pathak, V.M., et al., Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology. 2022. 13: p. 962619. Doi: 10.3389/fmicb.2022.962619
  • 11. Yin, Y.N., et al., Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology. 2023. 113 (4): p. 707-718. Doi: 10.1094/ PHYTO-10-22-0370-KD
  • 12. Spadaro, D. and M.L. Gullino, Imroving the efficacy of biocontrol agents against soil borne pathogens. Crop Protection. 2005. 24 (7): p. 601-613. Doi: 10.1016/j.cropro.2004.11. 003
  • 13. Laslo, E., et al., Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Protection. 2012. 40: p. 43-48. Doi:10.1016/j.cropro.2012.05.002.
  • 14. Mukhopadhyay, R. and D. Kumar, Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control. 2020. 30: p. 133. Doi: 10.1186/s41938-020-00333-x
  • 15. Fagundes-Nacarath, I.R., et al., Antagonistic potential of different species of Trichoderma against Sclerotinia sclerotiorum. Journal of Phytopathology. 2025. 173: e70012. Doi: 10.1111/jph.70012.
  • 16. Druzhinina, I. and C.P. Kubicek, Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. Journal of Zhejiang University. 2005. 6(2): p. 100-112. Doi: 10.1631/ zus.2005. B0100
  • 17. Weindling, R., Trichoderma lignorum as a parasite of other soil fungi. Phytopathology. 1932. 22: p. 837- 845.
  • 18. Silva, L.G., et al., Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Frontiers in Plant Science. 2022. Doi: 10.3389/fpls.2022.983127.
  • 19. Inbar, J., A. Mendenez, and I. Chet, Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biology and Biochemistry. 1996. 28 (6): p. 757-763. Doi: 10.1016/0038-0717(96)00010-7
  • 20. Osorio-Hernandez, E., et al., In vitro activities of Trichoderma species against Phytophthora parasitica and Fusarium oxysporum. African Journal of Microbiology Research. 2016. 10 (15): p. 521-527. Doi: 10.5897/AJMR2016.7958
  • 21. Yedidia, I., et al., Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology. 2003. 69 (12): p. 7343-7353. Doi: 10.1128/AEM.69.12.7343-7353.2003
  • 22. Singh, B.N., et al., Trichoderma harzianum mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. European Journal of Plant Pathology. 2011. 131: p. 121-134. Doi: 10.1007/s10658-011-9792-4
  • 23. De Meyer. G., et al., Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology. 1998. 104: p. 279-286. Doi: 10.1023/a:1008628806616
  • 24. Mandal, S. and A. Mitra, Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology. 2007. 71 (4-6): p. 201-209. Doi: 10.1016/j.pmpp.2008.02.003
  • 25. Howell, C.R., et al., Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology. 2000. 90 (3): p. 248-252. Doi: 10.1094/phyto.2000.90.3.248
  • 26. Harman, G.E., Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006. 96 (2): p. 190-194. Doi: 10.1094/phtyo-96-0190
  • 27. Elad, Y., Y. Zuiel and I. Chet, Biological control of Macrophomina phaseolina (Tassi) Gold, by Trichoderma harzianum. Crop Protection. 1986. 5: p. 288-292. Doi: 10.1016/0261-2194(86)90065-7
  • 28. Yıldız, F. and B. Çenberci Çoşkun, Biological control of white mold disease (Sclerotinia sclerotiorum) on lettuce by using fungal antagonists. Journal of Turkish Phytopathology. 2017. 46 (1): p. 1-14.
  • 29. Zazzerini, A. and L. Tosi, Observations on the antagonistic activity of some fungi and bacteria against Sclerotinia sclerotiorum (lib.) de Bary. Difesa-Delepiante. 1985. 8: p. 163-168. Doi:10.1111/j.1365-3059.1985.tb01381.x
  • 30. Aksay, A., M. Bicici, and O. Cinar, Determination of antagonists against white mold pathogen Sclerotinia sclerotiorum (Lib) de Bary. Çukurova Journal of Agricultural and Food Sciences. 1991. 6: p. 55-62.
  • 31. Tozlu, E., The cultural, biological and chemical control of Sclerotinia sclerotiorum and Sclerotinia minor in sunflower. Atatürk University Journal of Agricultural Faculty. 2008. 39: p. 281-286.
  • 32. Tozlu, E. and E. Demirci, Determination of potential biocontrol organisms against Sclerotinia sclerotiorum and S. minor on sunflower. Anadolu Tarım Bilimleri Dergisi. 2011. 26: p. 101-106.
  • 33. Singh, B.N., et al., Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. Journal of applied microbiology. 2013. 116: p. 654-666. Doi: 0.1111/jam.12387
  • 34. Li, E., et al., Efficacy of Trichoderma longibrachiatum SC5 fermentation filtrate in inhibiting the Sclerotinia sclerotiorum growth and development in sunflower. International Journal of Molecular Sciences. 2024. 26: p. 201. Doi: 10.3390/ijms26010201
  • 35. Royse, J.D. and M.S. Ries, The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology. 1978. 68: p. 603-607. Doi: 10.1094/Phyto-68-603
  • 36. Bell, D.K., H.D. Wells, and C.R. Markham, In vitro antagonism of Trichoderma species against six fungal plants pathogens. Phytopathology. 1982. 72: p. 379-382.
  • 37. Figueiredo, S.G., L.C. Figueiredo, and N.C.F. Cavalcanti, Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology. 2010. 53: p. 1-9. Doi: 10.1590/S1516-89132010000100001
  • 38. Abawi, G.S., et al., Reaction of lettuce germ plasm to artificial inoculation with Sclerotinia minor under greenhouse conditions. Plant Disease. 1980. 64: p. 668-671. Doi: 10.1094/pd-64-668
  • 39. Ngugi, H.K., et al., Prevalence, incidence and severity of sorghum diseases in western Kenya. Plant Disease. 2002. 86: p. 65-70. Doi:10.1094/pdis.2002.86.1.65
  • 40. Townsend, G.R. and J.W. Heuberger, Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter. 1943. 27: p. 340-343.
  • 41. Escarpa, A. and M.C. Gonzalez, High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of chromatography A. 1998. 823: p. 331-337. Doi:10.1016/s0021-9673(98)00294-5
  • 42. Kaur, C. and H.C. Kapoor, Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science. 2002. 37: p. 153-161. Doi: 10.1046/j.1365-2621.2002.00552.x
  • 43. Raynaldo, F.A., et al., Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea. Food Innovation and Advances. 2024. 3(2): p. 135-143. Doi:10.48130/fia-0024-0014
  • 44. Yao, X., et al., Trichoderma and its role in biological control of fungal and nematode disease. Front Microbiology. 2023. 14: p. 1160551. Doi:10.3389/fmicb.2023.1160551
  • 45. D'Souza, A., et al., Screening of Trichoderma harzianum against major fungal pathogens of betelvine. Indian Phytopathology. 2001. 54: p. 340-345.
  • 46. Datta, P., B. Dasgupta, and D.K. Sengupta, Efficacy of Trichoderma spp. against Phytophthora parasitica and Pythium spp. causing foot rot and leaf rot of betelvine (Piper betle L.). Journal of Crop and Weed. 2011. 7: p. 202-209.
  • 47. Carvalho, D.D.C., et al., Antagonist activity of Trichoderma harzianum against Sclerotinia sclerotiorum from common bean. Acta Iguazu. 2019. 8(1): p. 60-67.
  • 48. Mathews, J.R., B.J. Sivparsad, and M.D. Laing, Greenhouse evaluation of Trichoderma harzianum for the control of Sclerotinia wilt (Sclerotinia sclerotiorum) of sunflower. South African Journal of Plant and Soil. 2019. 36 (1): p. 69-72. Doi:10.1080/02571862.2018.1484189
  • 49. Asran-Amal, A., et al., Antagonistic potential of Trichoderma spp. against Rhizoctonia solani and use of M13 microsatellite-primed PCR to evaluate the antagonist genetic variation. Journal of Plant Diseases and Protection. 2005. 112 (6): p. 550-561.
  • 50. Abdullah, M.T., N.Y. Ali, and P. Suleman, Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection. 2008. 27: p. 1354-1359. Doi:10.1016/j.cropro2008.05. 007
  • 51. Marsic, N., Istrazivanje antagonizma Trichoderma longibrachiatum naspram Botrytis cinerea i Sclerotinia sclerotiorum. Dissertation. 2018. https://urn.nsk.hr/urn:nbn:hr:204:851433
  • 52. Ramezani, H., Biological control of root-rot of eggplant caused by Macrophomina phaseolina. American-Eurasian Journal of Agricultural & Environmental Sciences. 2008. 4 (2): p. 218-220.
  • 53. Ahmed, M.F.A., Management of date palm root rot diseases by using some biological control agents under organic farming system. Novel Research in Microbiology Journal. 2018. 2: p. 37-47. Doi: 10.21608/NRMJ.2018.6619
  • 54. Lo, C.T. and C.Y. Lin, Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathology Bulletin. 2002. 11: p. 215-220.
  • 55. Korkom, Y. and A. Yıldız, Isolated of Trichoderma isolates in strawberry production area on determination of the effectiveness against Macrophomina phaseolina in strawberry (cv. Rubygem). Journal of Adnan Menderes University Agricultural Faculty. 2020. 17: p. 21-28. Doi:10.25308/aduziraat.619308
  • 56. Özbay, N., M. Ergun, and A.R. Demirkıran AR. Effect of a commercial microbial fertilizer Sim Derma® (Trichoderma harzianum, Kuen1585) on germination, growth and yield of spinach. Turkish Journal of Agricultural and Natural Sciences. 2018. 5 (4): p. 482-491. Doi: 10.30910/turkjans.471290
  • 57. Nawrocka, J., M. Szczech, and U. Malolepsza, Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science. 2018. 54 (1): p. 17-23. Doi: 10.17221/126/2016-PPS
  • 58. El-Sharkawy, H.H.A., et al., Boosting biopesticide potential of Trichoderma harzianum for controlling the downy mildew and improving the growth and the productivity of King Ruby seedless grape. Egptian Journal of Biological Pest Control. 2023. 33: 61. Doi: 10.1186/s41938-023-00707-x
  • 59. Rauf, A., et al., Cultivating a greener future: Exploiting Trichoderma derived secondary metabolites for Fusarium wilt management in peas. Heliyon. 2024. 10 (7): e29031. Doi: 10.1016/j.heliyon.2024.e29031

Efficiency of Some Trichoderma Species against Stem Rot of Sunflower

Yıl 2025, Cilt: 8 Sayı: 3, 187 - 198, 23.12.2025
https://doi.org/10.38001/ijlsb.1726941

Öz

Stem rot is among the most important diseases of sunflower. Although fungicide usage is the most common method against plant diseases, biological control gained importance, because of the negative side effect of pesticides against human health and environment. In this study; in vitro and in vivo efficiency of Trichoderma atroviride, T. hamatum, T. harzianum and T. longibrachiatum against Sclerotinia sclerotiorum, S. minor and Macrophomina phaseolina causing stem rot on sunflower, was investigated. In the dual culture tests, T. atroviride and T. hamatum had higher inhibitory effects on the mycelial growth of the pathogens. However, in vivo studies showed that the lowest disease severity rates were obtained by T. harzianum and T. longibrachiatum against M. phaseolina and by T. hamatum and T. longibrachiatum against S. minor, while S. sclerotiorum was more efficiently suppressed by T. harzianum. All Trichoderma applications caused increase on some of the growth parameters of sunflower plants, when compared to controls. Similarly, all applications caused increase in total phenolic contents of the plants when compared to control groups. The highest total phenolic amounts were found at the estimations made 48 h after inoculations, in all applications. Although the level of their antagonistic effects changed depending on the pathogens and experimental conditions, all Trichoderma species suppressed stem rot pathogens. Trichoderma species also activate resistance mechanisms of sunflower plants to pathogens and induced plant growth. After the confirmation of the results by field trials, they can be used as environmental friendly alternative control agents against sunflower stem rot pathogens.

Destekleyen Kurum

Süleyman Demirel University

Proje Numarası

5004-YL1-17

Teşekkür

The authors would like to thank Dr. Irina Druzhinina (Royal Botanic Gardens, Kew, United Kingdom) and Dr. Lea Atanasova (University of Natural Resources and Life Sciences, Vienna, Austria) for their efforts in the molecular characterization of the Trichoderma isolates.

Kaynakça

  • 1. FAOSAT. http://www.fao.org. 2023. Accessed 17 January 2025.
  • 2. Bozer, P., Agricultural Products Market, Sunflower. 2024, Agricultural Economics and Policy Development Institute / AEPDI, 2024. https://arastirma.tarimorman.gov.tr/ tepge/Menu/27/Tarim-Urunleri-Piyasalari.
  • 3. Gulya, T.J., Mathew F, Harveson R, Markell S, Block C. Diseases of sunflower. Handbook of Florists' crops diseases, handbook of plant disease management. Springer International Publishing, Cham, 2016. p. 1-20.
  • 4. Khan, N.S., Macrophomina phaseolina as causal agent for charcoal rot of sunflower. Mycopathology, 2007. 5 (2): p. 111-118. Doi: 10.1017/s0021859612000512
  • 5. Chen, Z., et al., Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis signaling pathways. Environmental Science and Pollution Research. 2022. 29 (25): p. 38097-38109. Doi: 10.1007/s11356-021-18125-7
  • 6. Tozlu, E. and E. Demirci, Incidence and characterization of sunflower stem rot disease caused by Sclerotinia sclerotiorum and S. minor in Pasinler Plain of Erzurum, and reaction of some sunflower cultivars to the pathogens. Plant Protection Bulletin. 2008. 48 (4): p. 19-33
  • 7. Mahmoud, A. and H. Budak, First report of charcoal rot caused by Macrophomina phaseolina in sunflower in Turkey. Plant Disease. 2011. 95 (2): p. 223 Doi: 1094/pdis-09-10-0631
  • 8. Cotuna, O., M. Paraschivu, and V. Sărățeanu, Charcoal rot of the sunflower roots and stems (Macrophomina phaseolina (Tassi) Goid.)-an overview. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2022.22(1): p. 107-116.
  • 9. Alengebawy, A., et al., Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxicology. 2021. 9 (3): p. 42. Doi: 10.3390/toxics9030042
  • 10. Pathak, V.M., et al., Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology. 2022. 13: p. 962619. Doi: 10.3389/fmicb.2022.962619
  • 11. Yin, Y.N., et al., Fungicide Resistance: Progress in Understanding Mechanism, Monitoring, and Management. Phytopathology. 2023. 113 (4): p. 707-718. Doi: 10.1094/ PHYTO-10-22-0370-KD
  • 12. Spadaro, D. and M.L. Gullino, Imroving the efficacy of biocontrol agents against soil borne pathogens. Crop Protection. 2005. 24 (7): p. 601-613. Doi: 10.1016/j.cropro.2004.11. 003
  • 13. Laslo, E., et al., Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Protection. 2012. 40: p. 43-48. Doi:10.1016/j.cropro.2012.05.002.
  • 14. Mukhopadhyay, R. and D. Kumar, Trichoderma: a beneficial antifungal agent and insights into its mechanism of biocontrol potential. Egyptian Journal of Biological Pest Control. 2020. 30: p. 133. Doi: 10.1186/s41938-020-00333-x
  • 15. Fagundes-Nacarath, I.R., et al., Antagonistic potential of different species of Trichoderma against Sclerotinia sclerotiorum. Journal of Phytopathology. 2025. 173: e70012. Doi: 10.1111/jph.70012.
  • 16. Druzhinina, I. and C.P. Kubicek, Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters. Journal of Zhejiang University. 2005. 6(2): p. 100-112. Doi: 10.1631/ zus.2005. B0100
  • 17. Weindling, R., Trichoderma lignorum as a parasite of other soil fungi. Phytopathology. 1932. 22: p. 837- 845.
  • 18. Silva, L.G., et al., Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Frontiers in Plant Science. 2022. Doi: 10.3389/fpls.2022.983127.
  • 19. Inbar, J., A. Mendenez, and I. Chet, Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biology and Biochemistry. 1996. 28 (6): p. 757-763. Doi: 10.1016/0038-0717(96)00010-7
  • 20. Osorio-Hernandez, E., et al., In vitro activities of Trichoderma species against Phytophthora parasitica and Fusarium oxysporum. African Journal of Microbiology Research. 2016. 10 (15): p. 521-527. Doi: 10.5897/AJMR2016.7958
  • 21. Yedidia, I., et al., Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Applied and Environmental Microbiology. 2003. 69 (12): p. 7343-7353. Doi: 10.1128/AEM.69.12.7343-7353.2003
  • 22. Singh, B.N., et al., Trichoderma harzianum mediated reprogramming of oxidative stress response in root apoplast of sunflower enhances defense against Rhizoctonia solani. European Journal of Plant Pathology. 2011. 131: p. 121-134. Doi: 10.1007/s10658-011-9792-4
  • 23. De Meyer. G., et al., Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. European Journal of Plant Pathology. 1998. 104: p. 279-286. Doi: 10.1023/a:1008628806616
  • 24. Mandal, S. and A. Mitra, Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and Molecular Plant Pathology. 2007. 71 (4-6): p. 201-209. Doi: 10.1016/j.pmpp.2008.02.003
  • 25. Howell, C.R., et al., Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology. 2000. 90 (3): p. 248-252. Doi: 10.1094/phyto.2000.90.3.248
  • 26. Harman, G.E., Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006. 96 (2): p. 190-194. Doi: 10.1094/phtyo-96-0190
  • 27. Elad, Y., Y. Zuiel and I. Chet, Biological control of Macrophomina phaseolina (Tassi) Gold, by Trichoderma harzianum. Crop Protection. 1986. 5: p. 288-292. Doi: 10.1016/0261-2194(86)90065-7
  • 28. Yıldız, F. and B. Çenberci Çoşkun, Biological control of white mold disease (Sclerotinia sclerotiorum) on lettuce by using fungal antagonists. Journal of Turkish Phytopathology. 2017. 46 (1): p. 1-14.
  • 29. Zazzerini, A. and L. Tosi, Observations on the antagonistic activity of some fungi and bacteria against Sclerotinia sclerotiorum (lib.) de Bary. Difesa-Delepiante. 1985. 8: p. 163-168. Doi:10.1111/j.1365-3059.1985.tb01381.x
  • 30. Aksay, A., M. Bicici, and O. Cinar, Determination of antagonists against white mold pathogen Sclerotinia sclerotiorum (Lib) de Bary. Çukurova Journal of Agricultural and Food Sciences. 1991. 6: p. 55-62.
  • 31. Tozlu, E., The cultural, biological and chemical control of Sclerotinia sclerotiorum and Sclerotinia minor in sunflower. Atatürk University Journal of Agricultural Faculty. 2008. 39: p. 281-286.
  • 32. Tozlu, E. and E. Demirci, Determination of potential biocontrol organisms against Sclerotinia sclerotiorum and S. minor on sunflower. Anadolu Tarım Bilimleri Dergisi. 2011. 26: p. 101-106.
  • 33. Singh, B.N., et al., Trichoderma harzianum elicits induced resistance in sunflower challenged by Rhizoctonia solani. Journal of applied microbiology. 2013. 116: p. 654-666. Doi: 0.1111/jam.12387
  • 34. Li, E., et al., Efficacy of Trichoderma longibrachiatum SC5 fermentation filtrate in inhibiting the Sclerotinia sclerotiorum growth and development in sunflower. International Journal of Molecular Sciences. 2024. 26: p. 201. Doi: 10.3390/ijms26010201
  • 35. Royse, J.D. and M.S. Ries, The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology. 1978. 68: p. 603-607. Doi: 10.1094/Phyto-68-603
  • 36. Bell, D.K., H.D. Wells, and C.R. Markham, In vitro antagonism of Trichoderma species against six fungal plants pathogens. Phytopathology. 1982. 72: p. 379-382.
  • 37. Figueiredo, S.G., L.C. Figueiredo, and N.C.F. Cavalcanti, Biological and chemical control of Sclerotinia sclerotiorum using Trichoderma spp. and Ulocladium atrum and pathogenicity to bean plants. Brazilian Archives of Biology and Technology. 2010. 53: p. 1-9. Doi: 10.1590/S1516-89132010000100001
  • 38. Abawi, G.S., et al., Reaction of lettuce germ plasm to artificial inoculation with Sclerotinia minor under greenhouse conditions. Plant Disease. 1980. 64: p. 668-671. Doi: 10.1094/pd-64-668
  • 39. Ngugi, H.K., et al., Prevalence, incidence and severity of sorghum diseases in western Kenya. Plant Disease. 2002. 86: p. 65-70. Doi:10.1094/pdis.2002.86.1.65
  • 40. Townsend, G.R. and J.W. Heuberger, Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter. 1943. 27: p. 340-343.
  • 41. Escarpa, A. and M.C. Gonzalez, High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of chromatography A. 1998. 823: p. 331-337. Doi:10.1016/s0021-9673(98)00294-5
  • 42. Kaur, C. and H.C. Kapoor, Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science. 2002. 37: p. 153-161. Doi: 10.1046/j.1365-2621.2002.00552.x
  • 43. Raynaldo, F.A., et al., Biological control and other alternatives to chemical fungicides in controlling postharvest disease of fruits caused by Alternaria alternata and Botrytis cinerea. Food Innovation and Advances. 2024. 3(2): p. 135-143. Doi:10.48130/fia-0024-0014
  • 44. Yao, X., et al., Trichoderma and its role in biological control of fungal and nematode disease. Front Microbiology. 2023. 14: p. 1160551. Doi:10.3389/fmicb.2023.1160551
  • 45. D'Souza, A., et al., Screening of Trichoderma harzianum against major fungal pathogens of betelvine. Indian Phytopathology. 2001. 54: p. 340-345.
  • 46. Datta, P., B. Dasgupta, and D.K. Sengupta, Efficacy of Trichoderma spp. against Phytophthora parasitica and Pythium spp. causing foot rot and leaf rot of betelvine (Piper betle L.). Journal of Crop and Weed. 2011. 7: p. 202-209.
  • 47. Carvalho, D.D.C., et al., Antagonist activity of Trichoderma harzianum against Sclerotinia sclerotiorum from common bean. Acta Iguazu. 2019. 8(1): p. 60-67.
  • 48. Mathews, J.R., B.J. Sivparsad, and M.D. Laing, Greenhouse evaluation of Trichoderma harzianum for the control of Sclerotinia wilt (Sclerotinia sclerotiorum) of sunflower. South African Journal of Plant and Soil. 2019. 36 (1): p. 69-72. Doi:10.1080/02571862.2018.1484189
  • 49. Asran-Amal, A., et al., Antagonistic potential of Trichoderma spp. against Rhizoctonia solani and use of M13 microsatellite-primed PCR to evaluate the antagonist genetic variation. Journal of Plant Diseases and Protection. 2005. 112 (6): p. 550-561.
  • 50. Abdullah, M.T., N.Y. Ali, and P. Suleman, Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection. 2008. 27: p. 1354-1359. Doi:10.1016/j.cropro2008.05. 007
  • 51. Marsic, N., Istrazivanje antagonizma Trichoderma longibrachiatum naspram Botrytis cinerea i Sclerotinia sclerotiorum. Dissertation. 2018. https://urn.nsk.hr/urn:nbn:hr:204:851433
  • 52. Ramezani, H., Biological control of root-rot of eggplant caused by Macrophomina phaseolina. American-Eurasian Journal of Agricultural & Environmental Sciences. 2008. 4 (2): p. 218-220.
  • 53. Ahmed, M.F.A., Management of date palm root rot diseases by using some biological control agents under organic farming system. Novel Research in Microbiology Journal. 2018. 2: p. 37-47. Doi: 10.21608/NRMJ.2018.6619
  • 54. Lo, C.T. and C.Y. Lin, Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Plant Pathology Bulletin. 2002. 11: p. 215-220.
  • 55. Korkom, Y. and A. Yıldız, Isolated of Trichoderma isolates in strawberry production area on determination of the effectiveness against Macrophomina phaseolina in strawberry (cv. Rubygem). Journal of Adnan Menderes University Agricultural Faculty. 2020. 17: p. 21-28. Doi:10.25308/aduziraat.619308
  • 56. Özbay, N., M. Ergun, and A.R. Demirkıran AR. Effect of a commercial microbial fertilizer Sim Derma® (Trichoderma harzianum, Kuen1585) on germination, growth and yield of spinach. Turkish Journal of Agricultural and Natural Sciences. 2018. 5 (4): p. 482-491. Doi: 10.30910/turkjans.471290
  • 57. Nawrocka, J., M. Szczech, and U. Malolepsza, Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science. 2018. 54 (1): p. 17-23. Doi: 10.17221/126/2016-PPS
  • 58. El-Sharkawy, H.H.A., et al., Boosting biopesticide potential of Trichoderma harzianum for controlling the downy mildew and improving the growth and the productivity of King Ruby seedless grape. Egptian Journal of Biological Pest Control. 2023. 33: 61. Doi: 10.1186/s41938-023-00707-x
  • 59. Rauf, A., et al., Cultivating a greener future: Exploiting Trichoderma derived secondary metabolites for Fusarium wilt management in peas. Heliyon. 2024. 10 (7): e29031. Doi: 10.1016/j.heliyon.2024.e29031
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikrobiyoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Yasemin İstekli Temel 0000-0002-8566-8995

İsmail Erper 0000-0001-7952-8489

Gürsel Hatat Karaca 0000-0002-5159-2734

Proje Numarası 5004-YL1-17
Gönderilme Tarihi 26 Haziran 2025
Kabul Tarihi 8 Ağustos 2025
Erken Görünüm Tarihi 15 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 3

Kaynak Göster

EndNote İstekli Temel Y, Erper İ, Hatat Karaca G (01 Aralık 2025) Efficiency of Some Trichoderma Species against Stem Rot of Sunflower. International Journal of Life Sciences and Biotechnology 8 3 187–198.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366