Yıl 2021,
, 311 - 323, 15.08.2021
Nahdhoit Ahamada Rachıd
,
Nihal Doğruöz Güngör
Kaynakça
- 1. White, W.B. and C.D. Culver, Cave, definition of, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 255-259.
- 2. Tomczyk-Żak, K. and U. Zielenkiewicz, Microbial diversity in caves. Geomicrobiology Journal, 2016. 33(1): p. 20-38.
- 3. Adetutu, E.M., et al., Bacterial community survey of sedimenets at Naracoorte Caves, Australia. International Journal of Speleology, 2012. 41 (2): p. 2.
- 4. Hershey, O.S. and H.A. Barton, The Microbial Diversity of Caves, in Cave Ecology, O.T. Moldovan, L. Kovac and S. Halse, Editors. 2018, Springer, Cham. p. 69-90.
- 5. Banerjee, S., D.K. Jha and S.R.Joshi, Cave Microbiome for Human Welfare, in Microbial Diversity in Ecosystem Sustainability and Biotechnological applications, T. Satyanarayana, B.N. Johri, S.K. Das, Editors. 2019, Springer, Singapore. p. 3-30.
- 6. Northup, D.E. and K.H. Lavoie, Geomicrobiology of Caves: A Review. Geomicrobiology Journal, 2001. 68 (2): p. 43-54.
- 7. Canaveras, J.C. et al., On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 2006. 93 (1): p. 27-32.
- 8. Cacchio, P., et al., Involvement of Microorganisms in the Formation of Carbonate Speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiology journal, 2004. 21 (8): 497-509.
- 9. Canaveras, J. C., S. Sanchez-Moral, V. Sloer, C. Saiz-Jimenez, Microorganisms and Microbially Induced Fabrics in Cave Walls, 2001. 18 (3): p. 223-240.
- 10. Sakr, A.A., et al., Involvement of Streptomyces in the Deterioration of Cultural Heritage Materials Through Biomineralization and Bio-Pigment Production Pathways: A Review. Geomicrobiology journal, 2020. 37 (7): p. 653-662.
- 11. Omoregie, A.I., A.E.L. Ong, P.M. Nissom, Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Letters in applied microbiology, 2018. 68 (2): p. 173-181.
- 12. Sanchez-Moral, S., et al., The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology, 2012. 139. p. 285-292.
- 13. Pacton, M., et al., The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia: paleoenvironmental implications. Biogeosciences, 2013. 10 (9): p. 6115-6130.
- 14. Egemeier, S., Cavern development by thermaş waters. National Speleological Society Bulletin, 1981. 43: p. 31-51.
- 15. Engel, A.S., Observations on the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies, 2007. 69 (1): p. 187-206.
- 16. Engel, A.S., L.A. Stem, P.C. Bennett, Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis. Geology, 2004. 32 (5): p. 369-372.
- 17. Parker, C.W., et al., Fe (III) Reducing Microorganisms from Iron Ore Caves Demonstrate Fermentative Fe (III) Reduction and Promote Cave Formation. Geomicrobiology journal, 2018. 35 (4): p. 311-322.
- 18. Engel, A.S., Chemolithoautotrophy, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 267-283.
- 19. Yücel, A. and M. Yamaç, Selection of streptomyces isolates from turkish karstic caves against antibiotic resistant microorganisms. Pakistan Journal of Pharmaceutical Sciences, 2010. 23 (1): p. 1-6.
- 20. Candiroğlu B., N. Doğruöz-Güngör, The Biotechnological Potentials of Bacteria Isolated from Parsık Cave, Turkey. Johnson matthey technology review, 2020. 64 (4): p. 466-479.
- 21. Ghosha, S., N. Kuisieneb, N. Cheepthama, Review The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochemical pharmacology, 2017. 134: p. 18-34.
- 22. Bukelskis, D., et al., Screening and transcriptional analysis of polyketide synthases and non-ribosomal peptide synthetases in bacterial strains from Krubera–Voronja Cave. Frontiers in microbiology, 2019. 10: p. 2149.
- 23. Kovácsová, S., S. Javoreková, K. Majerčíková, J. Medo, Screening of antimicrobial activity and genes coding polyketide synthetase and nonribosomal peptide synthetase of actinomycete isolates. Biothechnology and food sciences, 2020. 9 (5): p. 255-258.
- 24. Rautela, R., et al., Microbial diversity of Gumki cave and their potential role in enzyme production. Environment conservation journal, 2017. 18 (3): p. 115-122.
- 25. Beolchini, F., et al., Sulphur-oxidising bacteria isolated from deep caves improve the removal of arsenic from contaminated harbour sediments. Chemistry and ecology, 2017. 33 (2): p. 103-113.
- 26. Shaw, L., The use of caves as burial chambers on Easter Island. Rapa Nui Journal: Journal of the Easter Island Foundation, 1996. 10(4): p. 101-103.
- 27. Zhalov, A. K., and K. S. Stoichkov, Cave necropolis in the vicinity of kizilin village, adiyaman province, Turkey. Пещеры как объекты истории и культуры, 2016. p. 117-122.
- 28. Chami, M. F., and F. A. Chami, Management of sacred heritage places in tanzania: A Case of Kuumbi Limestone Cave, Zanzibar Island. Journal of heritage management, 2020. 5 (1): p.71-88.
- 29. Taikiran, H., Prehistorik arkeoloji ve mağaralar. Mavi gezegen, 2018. 24: p. 63-68.
- 30. Aydıngün, Ş. G., Yarımburgaz mağarası’nda son durum. ARKEOLOJİ VE SANAT, 2016. 152: p. 217-230.
- 31. Ronquillo, W. P., Anthropological and cultural values of caves. Philippine quarterly of culture and society, 1995. 23 (2): p. 138-150.
- 32. Wilson, J. M., Recreational caving, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 861-869.
- 33. Clemmer, G.S., Camps, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 207-211.
- 34. Kambesis, P., The importance of cave exploration to scientific research. Journal of cave and karst studies, 2007. 69 (1): p. 46-58.
- 35. Leucci, G. and L. De Giorgi, Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Natural hazards and earth system sciences, 2005. 5 (17): p. 17-22.
- 36. Doğruöz-Güngör, N., B. Çandıroğlu, G. Altuğ, Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, 2019. 82 (2): p. 106-115.
- 37. Akca, H., M. Sayili, R. Cafri, Analysing expenditure of same-day visitors in cave tourism: the case of Turkey. Tourism economics, 2016. 22 (1): p. 47-55.
- 38. Alonso, L., et al., Anthropization level of Lascaux Cave microbiome shown by regional‐scale comparisons of pristine and anthropized caves. Molecular ecology, 28(14): p. 3383-3394.
- 39. Kurniawan, I. D., et al., The detection of human Activities’ impact on show caves environment in Pacitan, Indonesia, in Proceedings of the 17th International Congress of Speleology, Sydney, NSW, Australia, 2017: p. 22-28.
- 40. Lliffe, T. M. And C. Bowen, Scientific cave diving. Marine Technology Society Journal, 2001. 35 (2): p. 36-41.
- 41. Huddart, D. and T. Stott, Caving, in Outdoor recreation, Environmental Impacts and Management, D. Huddart and T. Stott, 2019, Springer Nature, Switzerland AG. p. 299-322.
- 42. Engel, A. S., Microbial diversity of cave ecosystems, in Geomicrobiology: Molecular and environmental perspective, L. L. Barton, M. Mandl, A. Loy, Editors. 2010, Springer, Dordrecht. P. 219-238.
- 43. Northup, D. E., Managing Microbial Communities in Caves, in Karst Management, P. E. V. Beynen, Editor. 2011, Springer, Dordrecht. p. 225-240.
- 44. Johnston, M. D., B. A. Muench, E. D. Banks, HÇAÇ Barton, Human urine in Lechuguilla Cave: the microbiological impact and potential for bioremediation. Journal of Cave and Karst Studies, 2012. 74 (3): p. 278-291.
- 45. Lavoie, K. H., and D. E. Northup, as indicators of human impact in caves, in Proceedings of the 17th National Cave and Karst Management Symposium, 2006: p. 40-47.
- 46. Guirado, E., et al., Modeling carbon dioxide for show cave conservation. Journal for nature conservation, 2019. 49: p. 76-84.
- 47. Gillieson, D. S., Management of caves, in Karst Management, P. E. V. Beynen, Editor. 2011, Springer, Dordrecht. p. 141-158.
- 48. Barton, H. A., Introduction to cave microbiology: a review for the non-specialist. Journal of cave and karst studies, 2006. 68 (2): p. 43-54.
- 49. https://adventure.howstuffworks.com/outdoor-activities/water-sports/cave-diving.htm
- 50. https://www.visit-dordogne-valley.co.uk/activities/sports/caving-in-the-dordogne-valley
Human activities’ impacts on cave microbial diversity: perspectives for cave microbial diversity conservation
Yıl 2021,
, 311 - 323, 15.08.2021
Nahdhoit Ahamada Rachıd
,
Nihal Doğruöz Güngör
Öz
Microorganisms are distributed everywhere even on the extreme environments such as caves. The underground surfaces are minerals rich and the life in there is found to be related to both biotic and abiotic factors. Since the cycle of these minerals is insured by the chemolithotrophs living in there. In addition, caves are also considered as important reservoirs of bioactive compounds. However, caves are entered for different reasons. Some of cavers are of scientific research, some of them are for recreational reasons like sports and simple cave visits. All these activities are thought to impacts on the visible mat and invisible colonies of microorganisms through mechanical force or importing exogenous microorganisms. This study summarizes the different impacts which can be caused by the different human activities in caves. Finally, perspective of the conservation of cave microbial structure are suggested for the further uses of caves.
Kaynakça
- 1. White, W.B. and C.D. Culver, Cave, definition of, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 255-259.
- 2. Tomczyk-Żak, K. and U. Zielenkiewicz, Microbial diversity in caves. Geomicrobiology Journal, 2016. 33(1): p. 20-38.
- 3. Adetutu, E.M., et al., Bacterial community survey of sedimenets at Naracoorte Caves, Australia. International Journal of Speleology, 2012. 41 (2): p. 2.
- 4. Hershey, O.S. and H.A. Barton, The Microbial Diversity of Caves, in Cave Ecology, O.T. Moldovan, L. Kovac and S. Halse, Editors. 2018, Springer, Cham. p. 69-90.
- 5. Banerjee, S., D.K. Jha and S.R.Joshi, Cave Microbiome for Human Welfare, in Microbial Diversity in Ecosystem Sustainability and Biotechnological applications, T. Satyanarayana, B.N. Johri, S.K. Das, Editors. 2019, Springer, Singapore. p. 3-30.
- 6. Northup, D.E. and K.H. Lavoie, Geomicrobiology of Caves: A Review. Geomicrobiology Journal, 2001. 68 (2): p. 43-54.
- 7. Canaveras, J.C. et al., On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 2006. 93 (1): p. 27-32.
- 8. Cacchio, P., et al., Involvement of Microorganisms in the Formation of Carbonate Speleothems in the Cervo Cave (L'Aquila-Italy). Geomicrobiology journal, 2004. 21 (8): 497-509.
- 9. Canaveras, J. C., S. Sanchez-Moral, V. Sloer, C. Saiz-Jimenez, Microorganisms and Microbially Induced Fabrics in Cave Walls, 2001. 18 (3): p. 223-240.
- 10. Sakr, A.A., et al., Involvement of Streptomyces in the Deterioration of Cultural Heritage Materials Through Biomineralization and Bio-Pigment Production Pathways: A Review. Geomicrobiology journal, 2020. 37 (7): p. 653-662.
- 11. Omoregie, A.I., A.E.L. Ong, P.M. Nissom, Assessing ureolytic bacteria with calcifying abilities isolated from limestone caves for biocalcification. Letters in applied microbiology, 2018. 68 (2): p. 173-181.
- 12. Sanchez-Moral, S., et al., The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology, 2012. 139. p. 285-292.
- 13. Pacton, M., et al., The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia: paleoenvironmental implications. Biogeosciences, 2013. 10 (9): p. 6115-6130.
- 14. Egemeier, S., Cavern development by thermaş waters. National Speleological Society Bulletin, 1981. 43: p. 31-51.
- 15. Engel, A.S., Observations on the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies, 2007. 69 (1): p. 187-206.
- 16. Engel, A.S., L.A. Stem, P.C. Bennett, Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis. Geology, 2004. 32 (5): p. 369-372.
- 17. Parker, C.W., et al., Fe (III) Reducing Microorganisms from Iron Ore Caves Demonstrate Fermentative Fe (III) Reduction and Promote Cave Formation. Geomicrobiology journal, 2018. 35 (4): p. 311-322.
- 18. Engel, A.S., Chemolithoautotrophy, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 267-283.
- 19. Yücel, A. and M. Yamaç, Selection of streptomyces isolates from turkish karstic caves against antibiotic resistant microorganisms. Pakistan Journal of Pharmaceutical Sciences, 2010. 23 (1): p. 1-6.
- 20. Candiroğlu B., N. Doğruöz-Güngör, The Biotechnological Potentials of Bacteria Isolated from Parsık Cave, Turkey. Johnson matthey technology review, 2020. 64 (4): p. 466-479.
- 21. Ghosha, S., N. Kuisieneb, N. Cheepthama, Review The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochemical pharmacology, 2017. 134: p. 18-34.
- 22. Bukelskis, D., et al., Screening and transcriptional analysis of polyketide synthases and non-ribosomal peptide synthetases in bacterial strains from Krubera–Voronja Cave. Frontiers in microbiology, 2019. 10: p. 2149.
- 23. Kovácsová, S., S. Javoreková, K. Majerčíková, J. Medo, Screening of antimicrobial activity and genes coding polyketide synthetase and nonribosomal peptide synthetase of actinomycete isolates. Biothechnology and food sciences, 2020. 9 (5): p. 255-258.
- 24. Rautela, R., et al., Microbial diversity of Gumki cave and their potential role in enzyme production. Environment conservation journal, 2017. 18 (3): p. 115-122.
- 25. Beolchini, F., et al., Sulphur-oxidising bacteria isolated from deep caves improve the removal of arsenic from contaminated harbour sediments. Chemistry and ecology, 2017. 33 (2): p. 103-113.
- 26. Shaw, L., The use of caves as burial chambers on Easter Island. Rapa Nui Journal: Journal of the Easter Island Foundation, 1996. 10(4): p. 101-103.
- 27. Zhalov, A. K., and K. S. Stoichkov, Cave necropolis in the vicinity of kizilin village, adiyaman province, Turkey. Пещеры как объекты истории и культуры, 2016. p. 117-122.
- 28. Chami, M. F., and F. A. Chami, Management of sacred heritage places in tanzania: A Case of Kuumbi Limestone Cave, Zanzibar Island. Journal of heritage management, 2020. 5 (1): p.71-88.
- 29. Taikiran, H., Prehistorik arkeoloji ve mağaralar. Mavi gezegen, 2018. 24: p. 63-68.
- 30. Aydıngün, Ş. G., Yarımburgaz mağarası’nda son durum. ARKEOLOJİ VE SANAT, 2016. 152: p. 217-230.
- 31. Ronquillo, W. P., Anthropological and cultural values of caves. Philippine quarterly of culture and society, 1995. 23 (2): p. 138-150.
- 32. Wilson, J. M., Recreational caving, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 861-869.
- 33. Clemmer, G.S., Camps, in Encyclopedia of caves, G.W. White, C.D. Culver and T. Pipan, Editors. 2019, Academic Press. p. 207-211.
- 34. Kambesis, P., The importance of cave exploration to scientific research. Journal of cave and karst studies, 2007. 69 (1): p. 46-58.
- 35. Leucci, G. and L. De Giorgi, Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Natural hazards and earth system sciences, 2005. 5 (17): p. 17-22.
- 36. Doğruöz-Güngör, N., B. Çandıroğlu, G. Altuğ, Enzyme profiles and antimicrobial activities of bacteria isolated from the Kadiini Cave, Alanya, Turkey. Journal of Cave and Karst Studies, 2019. 82 (2): p. 106-115.
- 37. Akca, H., M. Sayili, R. Cafri, Analysing expenditure of same-day visitors in cave tourism: the case of Turkey. Tourism economics, 2016. 22 (1): p. 47-55.
- 38. Alonso, L., et al., Anthropization level of Lascaux Cave microbiome shown by regional‐scale comparisons of pristine and anthropized caves. Molecular ecology, 28(14): p. 3383-3394.
- 39. Kurniawan, I. D., et al., The detection of human Activities’ impact on show caves environment in Pacitan, Indonesia, in Proceedings of the 17th International Congress of Speleology, Sydney, NSW, Australia, 2017: p. 22-28.
- 40. Lliffe, T. M. And C. Bowen, Scientific cave diving. Marine Technology Society Journal, 2001. 35 (2): p. 36-41.
- 41. Huddart, D. and T. Stott, Caving, in Outdoor recreation, Environmental Impacts and Management, D. Huddart and T. Stott, 2019, Springer Nature, Switzerland AG. p. 299-322.
- 42. Engel, A. S., Microbial diversity of cave ecosystems, in Geomicrobiology: Molecular and environmental perspective, L. L. Barton, M. Mandl, A. Loy, Editors. 2010, Springer, Dordrecht. P. 219-238.
- 43. Northup, D. E., Managing Microbial Communities in Caves, in Karst Management, P. E. V. Beynen, Editor. 2011, Springer, Dordrecht. p. 225-240.
- 44. Johnston, M. D., B. A. Muench, E. D. Banks, HÇAÇ Barton, Human urine in Lechuguilla Cave: the microbiological impact and potential for bioremediation. Journal of Cave and Karst Studies, 2012. 74 (3): p. 278-291.
- 45. Lavoie, K. H., and D. E. Northup, as indicators of human impact in caves, in Proceedings of the 17th National Cave and Karst Management Symposium, 2006: p. 40-47.
- 46. Guirado, E., et al., Modeling carbon dioxide for show cave conservation. Journal for nature conservation, 2019. 49: p. 76-84.
- 47. Gillieson, D. S., Management of caves, in Karst Management, P. E. V. Beynen, Editor. 2011, Springer, Dordrecht. p. 141-158.
- 48. Barton, H. A., Introduction to cave microbiology: a review for the non-specialist. Journal of cave and karst studies, 2006. 68 (2): p. 43-54.
- 49. https://adventure.howstuffworks.com/outdoor-activities/water-sports/cave-diving.htm
- 50. https://www.visit-dordogne-valley.co.uk/activities/sports/caving-in-the-dordogne-valley