Araştırma Makalesi
BibTex RIS Kaynak Göster

3D Structural Prediction of Catechin Specific Aptamer

Yıl 2022, , 21 - 28, 15.04.2022
https://doi.org/10.38001/ijlsb.961138

Öz

Catechin has been reported to possess many advantageous for practical application due to its distinctive antioxidant and anti-inflammatory performance. This paper reports the in-silico characterization of single stranded-DNA (ssDNA) aptamers, specific for catechin. 28 primary sequences from DNA-aptamers library screened via systemic evolution of ligands by exponential enrichment (SELEX) from previous research were predicted and constructed into 3D structural conformation using several bioinformatics tools. Blind docking was performed to all 28 aptamer candidates and resulted in 4 noticeable aptamer with highest binding energy, namely Aptamer 24, 18, 9 and 27 as catechin specific aptamer. Influence of environmental factors towards catechin specific aptamers also was taken in consideration. It was predicted that aptamer 24, 18, 9 and 27 were the most potential aptamer for catechin recognition tool at laboratory scale based on the docking result. However, further in vitro experimental study in laboratory needs to be done as validation.

Proje Numarası

This project was funded by Ministry of Higher Education (MOE), Malaysia and Innovation and Commercialization Centre (ICC), Universiti Teknologi Malaysia (UTM) [PRGS:ICC (PY/2020/03762)]

Teşekkür

We also would like to acknowledge Department of Bioscience, Faculty of Science, UTM for supporting this project

Kaynakça

  • 1. Mbaveng AT, Hamm R, Kuete V. Harmful and Protective Effects of Terpenoids from African Medicinal Plants. Toxicological Survey of African Medicinal Plants. Elsevier Inc.; 2014. 557-576 p.
  • 2. Zanwar AA, Badole SL, Shende PS, Hegde M V., Bodhankar SL. Antioxidant Role of Catechin in Health and Disease. Vol. 1, Polyphenols in Human Health and Disease. Elsevier Inc.; 2013. 267-271 p.
  • 3. Heiat M, Ranjbar R, Fasihi-ramandi M, Mohammad A. Characterization of pharmacological properties of isolated single- stranded DNA aptamers against angiotensin II. 2016;30:238–45.
  • 4. Hermann T, Patel DJ. Biochemistry - Adaptive recognition by nucleic acid aptamers [Review]. Science (80- ). 2000;287(5454):820–5.
  • 5. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.
  • 6. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012;40(14):1–12.
  • 7. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
  • 8. Jeddi I, Saiz L. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci Rep. 2017;7(1):1–13.
  • 9. Tuma Sabah J, Zulkifli RM, Shahir S, Ahmed F, Abdul Kadir MR, Zakaria Z. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool. Anal Biochem. 2018;549(March):72–9.
  • 10. Oleg Trott and Arthur J Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Isr J Psychiatry Relat Sci. 2012;49(3):151–8.
  • 11. Owczarzy R, Moreira BG, You Y, Behlke MA, Wälder JA. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry. 2008;47(19):5336–53.
  • 12. Tan ZJ, Chen SJ. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys J. 2006;90(4):1175–90.
  • 13. Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, et al. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry. 2014;53(41):6430–8.
  • 14. Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv. 2017;35(2):275–301.
  • 15. Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry. 2007;70(1):127–33.
  • 16. Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front Mol Biosci. 2018;5(May):1–16.
  • 17. Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FHT. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature. 2014;509(7502):588–92.
  • 18. Jung J, Ihiy R, Scott E, Yu M, Van Orden A. Probing the complete folding trajectory of a DNA hairpin using dual beam fluorescence fluctuation spectroscopy. J Phys Chem B. 2008;112(1):127–33.
  • 19. Lamoureux M, Patard L, Hernandez B, Couesnon T, Santini GPH, Cognet JAH, et al. Spectroscopic and structural impact of a stem base-pair change in DNA hairpins: GTTC-ACA-GAAC versus GTAC-ACA-GTAC. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2006;65(1):84–94.
Yıl 2022, , 21 - 28, 15.04.2022
https://doi.org/10.38001/ijlsb.961138

Öz

Proje Numarası

This project was funded by Ministry of Higher Education (MOE), Malaysia and Innovation and Commercialization Centre (ICC), Universiti Teknologi Malaysia (UTM) [PRGS:ICC (PY/2020/03762)]

Kaynakça

  • 1. Mbaveng AT, Hamm R, Kuete V. Harmful and Protective Effects of Terpenoids from African Medicinal Plants. Toxicological Survey of African Medicinal Plants. Elsevier Inc.; 2014. 557-576 p.
  • 2. Zanwar AA, Badole SL, Shende PS, Hegde M V., Bodhankar SL. Antioxidant Role of Catechin in Health and Disease. Vol. 1, Polyphenols in Human Health and Disease. Elsevier Inc.; 2013. 267-271 p.
  • 3. Heiat M, Ranjbar R, Fasihi-ramandi M, Mohammad A. Characterization of pharmacological properties of isolated single- stranded DNA aptamers against angiotensin II. 2016;30:238–45.
  • 4. Hermann T, Patel DJ. Biochemistry - Adaptive recognition by nucleic acid aptamers [Review]. Science (80- ). 2000;287(5454):820–5.
  • 5. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.
  • 6. Popenda M, Szachniuk M, Antczak M, Purzycka KJ, Lukasiak P, Bartol N, et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 2012;40(14):1–12.
  • 7. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
  • 8. Jeddi I, Saiz L. Three-dimensional modeling of single stranded DNA hairpins for aptamer-based biosensors. Sci Rep. 2017;7(1):1–13.
  • 9. Tuma Sabah J, Zulkifli RM, Shahir S, Ahmed F, Abdul Kadir MR, Zakaria Z. In vitro selection and characterization of single stranded DNA aptamers for luteolin: A possible recognition tool. Anal Biochem. 2018;549(March):72–9.
  • 10. Oleg Trott and Arthur J Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Isr J Psychiatry Relat Sci. 2012;49(3):151–8.
  • 11. Owczarzy R, Moreira BG, You Y, Behlke MA, Wälder JA. Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry. 2008;47(19):5336–53.
  • 12. Tan ZJ, Chen SJ. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys J. 2006;90(4):1175–90.
  • 13. Driessen RPC, Sitters G, Laurens N, Moolenaar GF, Wuite GJL, Goosen N, et al. Effect of temperature on the intrinsic flexibility of DNA and its interaction with architectural proteins. Biochemistry. 2014;53(41):6430–8.
  • 14. Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv. 2017;35(2):275–301.
  • 15. Hianik T, Ostatná V, Sonlajtnerova M, Grman I. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry. 2007;70(1):127–33.
  • 16. Kalra P, Dhiman A, Cho WC, Bruno JG, Sharma TK. Simple Methods and Rational Design for Enhancing Aptamer Sensitivity and Specificity. Front Mol Biosci. 2018;5(May):1–16.
  • 17. Duss O, Michel E, Yulikov M, Schubert M, Jeschke G, Allain FHT. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature. 2014;509(7502):588–92.
  • 18. Jung J, Ihiy R, Scott E, Yu M, Van Orden A. Probing the complete folding trajectory of a DNA hairpin using dual beam fluorescence fluctuation spectroscopy. J Phys Chem B. 2008;112(1):127–33.
  • 19. Lamoureux M, Patard L, Hernandez B, Couesnon T, Santini GPH, Cognet JAH, et al. Spectroscopic and structural impact of a stem base-pair change in DNA hairpins: GTTC-ACA-GAAC versus GTAC-ACA-GTAC. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2006;65(1):84–94.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstriyel Biyoteknoloji
Bölüm Araştırma Makaleleri
Yazarlar

Arinaasna Mat Tamidi Bu kişi benim

Nor Azlina Ahmad Bu kişi benim 0000-0002-7676-2904

Razauden Zulkifli 0000-0003-1925-0969

Huszalina Hussin Bu kişi benim 0000-0001-8564-1138

Muhammad Helmi Nadri 0000-0002-2506-2043

Proje Numarası This project was funded by Ministry of Higher Education (MOE), Malaysia and Innovation and Commercialization Centre (ICC), Universiti Teknologi Malaysia (UTM) [PRGS:ICC (PY/2020/03762)]
Yayımlanma Tarihi 15 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

EndNote Mat Tamidi A, Ahmad NA, Zulkifli R, Hussin H, Nadri MH (01 Nisan 2022) 3D Structural Prediction of Catechin Specific Aptamer. International Journal of Life Sciences and Biotechnology 5 1 21–28.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366