Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of In Vitro Synergy of Ampicilin and Chloramphenicol against Multidrug Resistant Bacillus cereus Species

Yıl 2022, , 42 - 55, 15.04.2022
https://doi.org/10.38001/ijlsb.970670

Öz

Nowadays, combination therapy has become one of the most effective clinical practices in treating infections due to the emergence of multi-resistant microorganisms. In this study, minimum inhibitory concentrations (MICs) of six selected antibiotics; ampicillin, gentamicin, tetracycline, rifampicin, chloramphenicol, and ciprofloxacin were screened towards five Bacillus cereus isolates; KS2, E2, F2, F6, and K2W2 isolated from aquaculture sources and river in Kukup, Johor, Malaysia. Determination of MICs on tested antibiotics showed that all B. cereus isolates were resistant towards ampicillin and rifampicin but most sensitive to chloramphenicol, ciprofloxacin, and gentamicin. Apart from that, this investigation also provides the synergistic effect of ampicillin and chloramphenicol against the B. cereus isolates. On contrary, K2W2 resulted as an antagonism while F6 resulted as indifference. In particular, synergy or double therapy of antibiotics may be required to treat multi-resistant organisms. Furthermore, the observed synergy between ampicillin and chloramphenicol opens a new window of using bacteriocins and antibiotics in combination therapy of infections.

Destekleyen Kurum

Universiti Teknologi Malaysia

Proje Numarası

17H74 and 04G97

Kaynakça

  • 1. Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O. and Piddock, L.J. V. (2014), “Molecular mechanisms of antibiotic resistance”, Nature Reviews Microbiology, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved., Vol. 13, p. 42.
  • 2. Li, B. and Webster, T.J. (2018), Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections, Journal of Orthopaedic Research, Vol. 36 No. 1, pp. 22–32.
  • 3. Munita, J.M. and Arias, C.A. (2016), “Mechanisms of Antibiotic Resistance”, Microbiology Spectrum, Vol 4 No. 2, pp. 1-37.
  • 4. Abebe, E., Tegegne, B., Tibebu, S., Medicine, V. and Box, P.O. (2016), “A Review on Molecular Mechanisms of Bacterial Resistance to Antibiotics”, Vol. 8 No. 5, pp. 301–310.
  • 5. Fletcher, S. and Fletcher, S. (2015), “Understanding the contribution of environmental factors in the spread of antimicrobial resistance”, Environmental Health and Preventive Medicine, Springer Japan, pp. 243–252.
  • 6. Economou, V. and Gousia, P. (2015), “Agriculture and food animals as a source of antimicrobial-resistant bacteria”, Infection and Drug Resistance, Vol 8, pp. 49-61.
  • 7. Karam, G., Chastre, J., Wilcox, M.H. and Vincent, J.L. (2016), “Antibiotic strategies in the era of multidrug resistance”, Critical Care, Critical Care, Vol. 20 No. 1, pp. 1–9.
  • 8. Ripa, M., Rodríguez-Núñez, O., Cardozo, C., Naharro-Abellán, A., Almela, M., Marco, F., Morata, L., et al. (2017), “Influence of empirical double-active combination antimicrobial therapy compared with active monotherapy on mortality in patients with septic shock: A propensity score-adjusted and matched analysis”, Journal of Antimicrobial Chemotherapy, Vol. 72 No. 12, pp. 3443–3452.
  • 9. Pena-Miller, R., Laehnemann, D., Jansen, G., Fuentes-Hernandez, A., Rosenstiel, P., Schulenburg, H. and Beardmore, R. (2013), “When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition”, PLoS Biology, Vol. 11 No. 4, pp. 14–16.
  • 10. Rainwater, F. & Thatcher, L. (1960). Methods for collection and analysis of water samples. Washington: U.S. Government Printing Office.
  • 11. Vijayabaskar, P. & Somasundaram, S.T. (2008). Isolation of Bacteriocin Producing Lactic Acid bacteria from fish gut and probiotic activity against common fresh water fish pathogen Aeromonas hydrophila. Biotechnology, 7(1), 124−128.
  • 12. Junior, J.C.R., Tamanini, R., Soares, B.F., de Oliveira, A.M., de Godoi Silva, F., da Silva, F.F., Augusto, N.A. & Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore−forming bacteria from milk. Semina Ciencias Agrarias, Vol. 37 No. 5, pp. 3069−3078.
  • 13. Sangprajug, R., Saranpuetti, C., Ngamwongsatit, P., Kowaboot, S., Siripanichagon, K. & Suthienkul, O. (2013, March 29). The increasing trend of ctxA and multi−drug resistance of Vibrio cholerae O1 isolated from clinical patients. Paper presented at the 1 st National Academic Conference “Promotion of integrated knowledge leading to ASEAN community”. Boston: Northeastern University.
  • 14. Lorenz, T.C. (2012), "Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies", Journal of Visualized Experiments, Vol. 63, pp. 3998.
  • 15. Veerakone, S., Lebas, B.S.M., Tang, J. & Clover, G.R.G. (2010). First report of Tomato mosaic virus in Griselinia lucida, an epiphytic shrub native to New Zealand. Australasian Plant Disease Notes, 5, 107−109.
  • 16. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. (2003), “Multiple sequence alignment with the Clustal series off programs”, Nucleic Acids Research, Vol 31 No. 13, pp. 3497−3500.
  • 17. Kumar, S., Stecher, G. and Tamura, K. (2016), “MEGA7: Moleclar evolutionary genetics analysis version 7.0 for bigger datasets”, Molecular Biology and Evolution, Vol 33 No. 7, pp. 1870−1874.
  • 18. El-Azizi, M. (2016), “Novel Microdilution Method to Assess Double and Triple Antibiotic Combination Therapy in Vitro”, International Journal of Microbiology, Vol. 2016, available at: https://doi.org/10.1155/2016/4612021.
  • 19. Andrews, J. M. (2001), “Determination of minimum inhibitory concentrations”, Journal of antimicrobial Chemotherapy, Vol 48(suppl_1), pp. 5-16.
  • 20. Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., and Banat, I. M. (2016), “Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants”, Biotechnology Letters, Vol 38 No. 6, pp. 1015–1019.
  • 21. Jain, S.N., Vishwanatha, T., Reena, V., Divyashree, B.C., Sampath, A., Siddhalingeshwara, K.G., Venugopal, N., et al. (2011), “Antibiotic Synergy Test: Checkerboard Method on Multidrug Resistant Pseudomonas Aeruginosa”, International Research Journal of Pharmacy, Vol. 2 No. 12, pp. 196–198.
  • 22. Kerfeld, C.A. and Scott, K.M. (2011), “Using BLAST to teach “E−value−tionary” concept”, PLoS Biology, Vol 9 No.2, p.e1001014.
  • 23. Wang, Y.B. (2007), “Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei”, Aquaculture, Vol 269, pp. 259−264.
  • 24. Onyuka, J.H.O., Kakai, R., Onyango, D.M., Arama, P.F., Gichuki, J. and Ofulla, A.V.O. (2011), “Prevalence and antimicrobial susceptibility patterns of enteric bacteria isolated from water and fish in lake victoria basin of western kenya”, World Academy of Science, Engineering and Technology, Vol. 51 No. March, pp. 761–768.
  • 25. Park, K.M., Kim, H.J., Jeong, M. and Koo, M. (2020), “Enterotoxin Genes, Antibiotic Susceptibility, and Biofilm Formation of Low-Temperature-Tolerant Bacillus cereus Isolated from Green Leaf Lettuce in the Cold Chain”, Foods, Vol. 9 No. 3, available at:https://doi.org/10.3390/foods9030249.
  • 26. SUKMARINI, L., MUSTOPA, A.Z., NORMAWATI, M. and MUZDALIFAH, I. (2014), “Identification of Antibiotic-Resistance Genes from Lactic Acid Bacteria in Indonesian Fermented Foods”, HAYATI Journal of Biosciences, Institut Pertanian Bogor, Vol. 21 No. 3, pp. 144–150.
  • 27. Cesur, S. and Demiröz, A.P. (2013), “Antibiotics and the Mechanisms of Resistance to Antibiotics”, Medical Journal of Islamic World Academy of Sciences, Vol. 21 No. 4, pp. 138–142.
  • 28. Soren, O., Brinch, K.S., Patel, D., Liu, Y., Liu, A., Coates, A. and Hu, Y. (2015), “Antimicrobial peptide novicidin synergizes with rifampin, ceftriaxone, and ceftazidime against antibiotic-resistant Enterobacteriaceae in vitro”, Antimicrobial Agents and Chemotherapy, Vol. 59 No. 10, pp. 6233–6240.
  • 29. Phillips, I. (1971), “Clinical uses and control of rifampicin and clindamycin.”, Journal of Clinical Pathology, Vol. 24 No. 5, pp. 410–418.
  • 30. Lahiri, N., Shah, R.R., Layre, E., Young, D., Ford, C., Murray, M.B., Fortune, S.M., et al. (2016), “Rifampin resistance mutations are associated with broad chemical remodeling of mycobacterium tuberculosis”, Journal of Biological Chemistry, Vol. 291 No. 27, pp. 14248–14256.
  • 31. Vogler, A.J., Busch, J.D., Percy-Fine, S., Tipton-Hunton, C., Smith, K.L. and Keim, P. (2002), “Molecular analysis of rifampin resistance in Bacillus anthracis and Bacillus cereus”, Antimicrobial Agents and Chemotherapy, Vol. 46 No. 2, pp. 511–513.
  • 32. Shida, O., Takagi, H., Kadowaki, K. and Miyaji, M. (1995), “Rifampicin Inactivation by Bacillus species”, The Journal of Antibiotics, Vol. 48 No. 8, pp. 815–819.
  • 33. Hellweger, F.L., Ruan, X. and Sanchez, S. (2011), “A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre River)”, International Journal of Environmental Research and Public Health, Vol. 8 No. 2, pp. 480–497.
  • 34. Shah, S.Q.A., Colquhoun, D.J., Nikuli, H.L. and Sørum, H. (2012), “Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.”, Environmental Science & Technology, United States, Vol. 46 No. 16, pp. 8672–8679.
  • 35. Saeed, B.M.S., Abbas, B.A. and Al-jadaan, S.A.N. (2018), “Molecular Detection of Tetracycline Resistance Genes”, Basrah Journal of Veterinary Research, Vol. 17 No. 3.
  • 36. Weber, D.J., Saviteer, S.M., Rutala, W.A. and Thomann, C.A. (1988), “In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.”, Antimicrobial Agents and Chemotherapy, Vol. 32 No. 5, pp. 642–645.
  • 37. Naas, H., Zurghani, M., Garbaj, A., Azwai, S., Eshamah, H., Gammoudi, F., Abolghait, S., et al. (2018), “Bacillus cereus as an emerging public health concern in Libya: Isolation and antibiogram from food of animal origin”, Libyan Journal of Medical Sciences, Vol. 2 No. 2, p. 56.
  • 38. Rahman, N.A., Akhter, A. and Urmi, N.J. (2015), “Evaluation of resistance pattern of the multi-drug resistant (MDR) bacteria isolated from burn wounds”, Stamford Journal of Microbiology, Vol. 3 No. 1, pp. 6–8.
  • 39. Agwa, O.K., Uzoigwe, C.I. and Wokoma, E.C. (2012), “Incidence and antibiotic sensitivity of Bacillus cereus isolated from ready to eat foods sold in some markets in Portharcourt, Rivers State, Nigeria”, Asian Journal of Microbiology, Biotechnology and Environmental Sciences, Vol. 14 No. 1, pp. 13–18.
  • 40. Manten, A. and Terra, J.J. (1964), "The antagonism between penicillin and other antibiotics in relation to drug concentration", Chemotherapia, Vol. 64, pp.21 - 29.
  • 41. Weeks, J.L., Mason, E.O. and Baker, C.J. (1981), “Antagonism of ampicillin and chloramphenicol for meningeal isolates of group B streptococci”, Antimicrobial Agents and Chemotherapy, Vol. 20 No. 3, pp. 281–285.
  • 42. Cole, F.S., Daum, R.S., Teller, L., Goldmann, D.A. and Smith, A.L. (1979), “Effect of ampicillin and chloramphenicol alone and in combination on ampicillin-susceptible and -resistant Haemophilus influenzae type B”, Antimicrobial Agents and Chemotherapy, Vol. 15 No. 3, pp. 415-419.
Yıl 2022, , 42 - 55, 15.04.2022
https://doi.org/10.38001/ijlsb.970670

Öz

Proje Numarası

17H74 and 04G97

Kaynakça

  • 1. Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O. and Piddock, L.J. V. (2014), “Molecular mechanisms of antibiotic resistance”, Nature Reviews Microbiology, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved., Vol. 13, p. 42.
  • 2. Li, B. and Webster, T.J. (2018), Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections, Journal of Orthopaedic Research, Vol. 36 No. 1, pp. 22–32.
  • 3. Munita, J.M. and Arias, C.A. (2016), “Mechanisms of Antibiotic Resistance”, Microbiology Spectrum, Vol 4 No. 2, pp. 1-37.
  • 4. Abebe, E., Tegegne, B., Tibebu, S., Medicine, V. and Box, P.O. (2016), “A Review on Molecular Mechanisms of Bacterial Resistance to Antibiotics”, Vol. 8 No. 5, pp. 301–310.
  • 5. Fletcher, S. and Fletcher, S. (2015), “Understanding the contribution of environmental factors in the spread of antimicrobial resistance”, Environmental Health and Preventive Medicine, Springer Japan, pp. 243–252.
  • 6. Economou, V. and Gousia, P. (2015), “Agriculture and food animals as a source of antimicrobial-resistant bacteria”, Infection and Drug Resistance, Vol 8, pp. 49-61.
  • 7. Karam, G., Chastre, J., Wilcox, M.H. and Vincent, J.L. (2016), “Antibiotic strategies in the era of multidrug resistance”, Critical Care, Critical Care, Vol. 20 No. 1, pp. 1–9.
  • 8. Ripa, M., Rodríguez-Núñez, O., Cardozo, C., Naharro-Abellán, A., Almela, M., Marco, F., Morata, L., et al. (2017), “Influence of empirical double-active combination antimicrobial therapy compared with active monotherapy on mortality in patients with septic shock: A propensity score-adjusted and matched analysis”, Journal of Antimicrobial Chemotherapy, Vol. 72 No. 12, pp. 3443–3452.
  • 9. Pena-Miller, R., Laehnemann, D., Jansen, G., Fuentes-Hernandez, A., Rosenstiel, P., Schulenburg, H. and Beardmore, R. (2013), “When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition”, PLoS Biology, Vol. 11 No. 4, pp. 14–16.
  • 10. Rainwater, F. & Thatcher, L. (1960). Methods for collection and analysis of water samples. Washington: U.S. Government Printing Office.
  • 11. Vijayabaskar, P. & Somasundaram, S.T. (2008). Isolation of Bacteriocin Producing Lactic Acid bacteria from fish gut and probiotic activity against common fresh water fish pathogen Aeromonas hydrophila. Biotechnology, 7(1), 124−128.
  • 12. Junior, J.C.R., Tamanini, R., Soares, B.F., de Oliveira, A.M., de Godoi Silva, F., da Silva, F.F., Augusto, N.A. & Beloti, V. (2016). Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating spore−forming bacteria from milk. Semina Ciencias Agrarias, Vol. 37 No. 5, pp. 3069−3078.
  • 13. Sangprajug, R., Saranpuetti, C., Ngamwongsatit, P., Kowaboot, S., Siripanichagon, K. & Suthienkul, O. (2013, March 29). The increasing trend of ctxA and multi−drug resistance of Vibrio cholerae O1 isolated from clinical patients. Paper presented at the 1 st National Academic Conference “Promotion of integrated knowledge leading to ASEAN community”. Boston: Northeastern University.
  • 14. Lorenz, T.C. (2012), "Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies", Journal of Visualized Experiments, Vol. 63, pp. 3998.
  • 15. Veerakone, S., Lebas, B.S.M., Tang, J. & Clover, G.R.G. (2010). First report of Tomato mosaic virus in Griselinia lucida, an epiphytic shrub native to New Zealand. Australasian Plant Disease Notes, 5, 107−109.
  • 16. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G. and Thompson, J.D. (2003), “Multiple sequence alignment with the Clustal series off programs”, Nucleic Acids Research, Vol 31 No. 13, pp. 3497−3500.
  • 17. Kumar, S., Stecher, G. and Tamura, K. (2016), “MEGA7: Moleclar evolutionary genetics analysis version 7.0 for bigger datasets”, Molecular Biology and Evolution, Vol 33 No. 7, pp. 1870−1874.
  • 18. El-Azizi, M. (2016), “Novel Microdilution Method to Assess Double and Triple Antibiotic Combination Therapy in Vitro”, International Journal of Microbiology, Vol. 2016, available at: https://doi.org/10.1155/2016/4612021.
  • 19. Andrews, J. M. (2001), “Determination of minimum inhibitory concentrations”, Journal of antimicrobial Chemotherapy, Vol 48(suppl_1), pp. 5-16.
  • 20. Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., and Banat, I. M. (2016), “Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants”, Biotechnology Letters, Vol 38 No. 6, pp. 1015–1019.
  • 21. Jain, S.N., Vishwanatha, T., Reena, V., Divyashree, B.C., Sampath, A., Siddhalingeshwara, K.G., Venugopal, N., et al. (2011), “Antibiotic Synergy Test: Checkerboard Method on Multidrug Resistant Pseudomonas Aeruginosa”, International Research Journal of Pharmacy, Vol. 2 No. 12, pp. 196–198.
  • 22. Kerfeld, C.A. and Scott, K.M. (2011), “Using BLAST to teach “E−value−tionary” concept”, PLoS Biology, Vol 9 No.2, p.e1001014.
  • 23. Wang, Y.B. (2007), “Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei”, Aquaculture, Vol 269, pp. 259−264.
  • 24. Onyuka, J.H.O., Kakai, R., Onyango, D.M., Arama, P.F., Gichuki, J. and Ofulla, A.V.O. (2011), “Prevalence and antimicrobial susceptibility patterns of enteric bacteria isolated from water and fish in lake victoria basin of western kenya”, World Academy of Science, Engineering and Technology, Vol. 51 No. March, pp. 761–768.
  • 25. Park, K.M., Kim, H.J., Jeong, M. and Koo, M. (2020), “Enterotoxin Genes, Antibiotic Susceptibility, and Biofilm Formation of Low-Temperature-Tolerant Bacillus cereus Isolated from Green Leaf Lettuce in the Cold Chain”, Foods, Vol. 9 No. 3, available at:https://doi.org/10.3390/foods9030249.
  • 26. SUKMARINI, L., MUSTOPA, A.Z., NORMAWATI, M. and MUZDALIFAH, I. (2014), “Identification of Antibiotic-Resistance Genes from Lactic Acid Bacteria in Indonesian Fermented Foods”, HAYATI Journal of Biosciences, Institut Pertanian Bogor, Vol. 21 No. 3, pp. 144–150.
  • 27. Cesur, S. and Demiröz, A.P. (2013), “Antibiotics and the Mechanisms of Resistance to Antibiotics”, Medical Journal of Islamic World Academy of Sciences, Vol. 21 No. 4, pp. 138–142.
  • 28. Soren, O., Brinch, K.S., Patel, D., Liu, Y., Liu, A., Coates, A. and Hu, Y. (2015), “Antimicrobial peptide novicidin synergizes with rifampin, ceftriaxone, and ceftazidime against antibiotic-resistant Enterobacteriaceae in vitro”, Antimicrobial Agents and Chemotherapy, Vol. 59 No. 10, pp. 6233–6240.
  • 29. Phillips, I. (1971), “Clinical uses and control of rifampicin and clindamycin.”, Journal of Clinical Pathology, Vol. 24 No. 5, pp. 410–418.
  • 30. Lahiri, N., Shah, R.R., Layre, E., Young, D., Ford, C., Murray, M.B., Fortune, S.M., et al. (2016), “Rifampin resistance mutations are associated with broad chemical remodeling of mycobacterium tuberculosis”, Journal of Biological Chemistry, Vol. 291 No. 27, pp. 14248–14256.
  • 31. Vogler, A.J., Busch, J.D., Percy-Fine, S., Tipton-Hunton, C., Smith, K.L. and Keim, P. (2002), “Molecular analysis of rifampin resistance in Bacillus anthracis and Bacillus cereus”, Antimicrobial Agents and Chemotherapy, Vol. 46 No. 2, pp. 511–513.
  • 32. Shida, O., Takagi, H., Kadowaki, K. and Miyaji, M. (1995), “Rifampicin Inactivation by Bacillus species”, The Journal of Antibiotics, Vol. 48 No. 8, pp. 815–819.
  • 33. Hellweger, F.L., Ruan, X. and Sanchez, S. (2011), “A simple model of tetracycline antibiotic resistance in the aquatic environment (with application to the Poudre River)”, International Journal of Environmental Research and Public Health, Vol. 8 No. 2, pp. 480–497.
  • 34. Shah, S.Q.A., Colquhoun, D.J., Nikuli, H.L. and Sørum, H. (2012), “Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania.”, Environmental Science & Technology, United States, Vol. 46 No. 16, pp. 8672–8679.
  • 35. Saeed, B.M.S., Abbas, B.A. and Al-jadaan, S.A.N. (2018), “Molecular Detection of Tetracycline Resistance Genes”, Basrah Journal of Veterinary Research, Vol. 17 No. 3.
  • 36. Weber, D.J., Saviteer, S.M., Rutala, W.A. and Thomann, C.A. (1988), “In vitro susceptibility of Bacillus spp. to selected antimicrobial agents.”, Antimicrobial Agents and Chemotherapy, Vol. 32 No. 5, pp. 642–645.
  • 37. Naas, H., Zurghani, M., Garbaj, A., Azwai, S., Eshamah, H., Gammoudi, F., Abolghait, S., et al. (2018), “Bacillus cereus as an emerging public health concern in Libya: Isolation and antibiogram from food of animal origin”, Libyan Journal of Medical Sciences, Vol. 2 No. 2, p. 56.
  • 38. Rahman, N.A., Akhter, A. and Urmi, N.J. (2015), “Evaluation of resistance pattern of the multi-drug resistant (MDR) bacteria isolated from burn wounds”, Stamford Journal of Microbiology, Vol. 3 No. 1, pp. 6–8.
  • 39. Agwa, O.K., Uzoigwe, C.I. and Wokoma, E.C. (2012), “Incidence and antibiotic sensitivity of Bacillus cereus isolated from ready to eat foods sold in some markets in Portharcourt, Rivers State, Nigeria”, Asian Journal of Microbiology, Biotechnology and Environmental Sciences, Vol. 14 No. 1, pp. 13–18.
  • 40. Manten, A. and Terra, J.J. (1964), "The antagonism between penicillin and other antibiotics in relation to drug concentration", Chemotherapia, Vol. 64, pp.21 - 29.
  • 41. Weeks, J.L., Mason, E.O. and Baker, C.J. (1981), “Antagonism of ampicillin and chloramphenicol for meningeal isolates of group B streptococci”, Antimicrobial Agents and Chemotherapy, Vol. 20 No. 3, pp. 281–285.
  • 42. Cole, F.S., Daum, R.S., Teller, L., Goldmann, D.A. and Smith, A.L. (1979), “Effect of ampicillin and chloramphenicol alone and in combination on ampicillin-susceptible and -resistant Haemophilus influenzae type B”, Antimicrobial Agents and Chemotherapy, Vol. 15 No. 3, pp. 415-419.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Mikrobiyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Nor Azimah Mohd Zain 0000-0002-6010-3568

Nur Aina Mardhiah Abdul Halid Bu kişi benim

Kam Kar Yern

Athena Dana Bu kişi benim

Proje Numarası 17H74 and 04G97
Yayımlanma Tarihi 15 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

EndNote Mohd Zain NA, Abdul Halid NAM, Kar Yern K, Dana A (01 Nisan 2022) Determination of In Vitro Synergy of Ampicilin and Chloramphenicol against Multidrug Resistant Bacillus cereus Species. International Journal of Life Sciences and Biotechnology 5 1 42–55.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366