Derleme
BibTex RIS Kaynak Göster

Domates Bitkisi, Besin İçeriği ve Sağlık Açısından Değerlendirmesi

Yıl 2018, Cilt: 1 Sayı: 2, 59 - 74, 18.12.2018
https://doi.org/10.38001/ijlsb.482443

Öz

Gıda arz temini yani beslenme ihtiyacı insanın yer kürede var olmasından bu yana en temel problemlerden biri olmuştur. Tarih boyunca sürekli tarım ve beslenmeye yönelik çalışmalar yapılmış ve açlık sorununa çözümler bulunmaya çalışılmıştır. Özellikle ikinci dünya savaşından sonra yapılan devrim niteliğinde ki çalışmalar bu ihtiyaca cevap bulmak için yapılmış ve o dönem için kısa vadeli çözümler bulunulmasını sağlamıştır. Yapılan çalışmalar neticesinde kullanılan kimyasal maddeler, savaşlar neticesinde günümüzün önemli problemlerinden olan ağır metal stresi ve çevresel kirlilik günümüzde halen tedavisi mümkün olmayan çeşitli kanser ve kardiyovasküler hastalıklar gibi problemlerin ortaya çıkmasına neden olmuştur. Yapılan
araştırmalar neticesinde bu problemler ile birlikte diyabetik hastalıklar, kalp krizi, inme gibi hastalıklar için kullanılabilecek tedaviler için zengin bir antioksidan kaynağı olan domates üzerinde çalışmaların daha da yoğunlaşmasına neden olmuştur. Likopenin anti-oksidatif ve anti kanser özelliklerinin keşfedilmesi ve domateste’de Likopenin bol miktarda bulunması, yüksek özdöllenme, melezmede, tozlaştırmada kolaylıklar bulunması ve özelliklede 2012 yılında genom çalışmaları tamamlanan domates bitkisi üzerinde birçok antioksidatif ve anti-kanser çareler bulmak için yapılan çalışmalarda ciddi oranda artış gözlendiği görülmüştür. Domatesin A ve C vitamini ile potasyum miktarı bakımından zengin olması domatesin kalori ve yağ oranının düşük olması ve kolesterol içermeyen lifli bir meyve olması da tercih edilebilirliğinin artıran başka bir neden olmuştur. Bu derlemede domates bitkisinin genel özellikleri ve üretim miktarları verildikten sonra besin içeriği ve sağlık üzerine etkilerine değinilmiştir.

Kaynakça

  • Yüksek, A., İslam Hukukuna Göre Helal Gıda ve GDO’lu Ürünler. (Genetiği Değiştirilmiş Organizmalar). 2018, Bişkek: İz Basma.
  • Arvas, Y.E., Genetiği Değiştirilmiş Bitkiler ve Tanısı. 2017, Düsseldorf, Germany: Lambert Yayınevi.
  • Al-Remi, F., et al., Domates Bı̇tkı̇sı̇ Ve in Vı̇tro Mı̇kro Çoğaltımı (Tomato Plant and Its In Vitro Micropropagation). Journal of Engineering Technology and Applied Sciences, 2018. 3(1): p. 55-73.
  • Sönmez, K. and Ş.Ş. Ellİaltioğlu, Domates, karotenoidler ve bunları etkileyen faktörler üzerine bir inceleme. Derim, 2014. 31(2): p. 107-130.
  • Minoia, S., et al., A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC research notes, 2010. 3(1): p. 69.TomatoGenomeConsortium, The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012. 485(7400): p. 635-641.
  • Bai, Y. and P. Lindhout, Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of botany, 2007. 100(5): p. 1085-1094.
  • Foolad, M.R., Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007. 2007.
  • Peralta, I.E. and D.M. Spooner, History, origin and early cultivation of tomato (Solanaceae). Genetic improvement of solanaceous crops, 2006. 2: p. 1-27.
  • Günay, A., Sebze yetiştiriciliği. Cilt-II, Meta Basımevi, İzmir, 2005.
  • FAOSTAT. 2011; Available from: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E.
  • Goodenough, P.W., Tomato, cucumber and gherkin. Elsevier Science, 1991: p. pp.327-350.
  • Çakıroğlu, M., Metabolic and genomic profiling for taste and aroma traits in tomato (Solanum lycopersicum). 2017, İzmir Institute of Technology.
  • Anonymous. FAOSTAT. Agriculture Production Data. 2014; Available from: http://faostat.fao.org. [Erişim tarihi: 29.08.2018].
  • Dorais, M., et al., Greenhouse tomato fruit cuticle cracking. Horticultural Reviews, Volume 30, 2004: p. 163-184.
  • Tatar, M. and V. Pİrİnç, Türkiye Güneydoğu Anadolu Bölgesi’nin Sanayi Domatesi Üretim Potansiyeli. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017. 7(2): p. 11-20.
  • FAO. Statistical Pocketbook World Food and Agriculture. Food and Agriculture Organisation of the United Nations. . 2017; Available from: http://www.fao.org/land-water/databases-and-software/en/ [Erişim Tarihi: 30.10.2018].
  • USDA. National Nutrient Database for Standard Reference Release 28. 2017; Available from: https://ndb.nal.usda.gov/ndb/foods/show/3223 [Erişim Tarihi: 29.10.2018].
  • TAGEM. Tarım Ürünleri Piyasaları Domates. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TAGEM). 2018; Available from: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2018-Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/2018-Ocak%20Domates.pdf [Erişim Tarihi: 28.10.2018].
  • Paduchuri, P., et al., Transgenic tomatoes—a review. Int J Adv Biotechnol Res, 2010. 1: p. 69-72.
  • Consortium, T.G., The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012. 485(7400): p. 635.
  • Martí, E., et al., Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of experimental botany, 2006. 57(9): p. 2037-2047.
  • Saito, T., et al., Tomatoma: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant and cell physiology, 2011. 52(2): p. 283-296.
  • Dorais, M., et al., Greenhouse tomato fruit cuticle cracking. Hort. Rev, 2004. 30: p. 163-184.
  • Kobayashi, M., et al., Genome-wide analysis of intraspecific DNA polymorphism in ‘Micro-Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant and Cell Physiology, 2014. 55(2): p. 445-454.
  • Sant’Ana, D.V.P. and M. Lefsrud, Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae, 2018. 239: p. 224-233.Petro‐Turza, M., Flavor of tomato and tomato products. Food Reviews International, 1986. 2(3): p. 309-351.
  • Kabelka, E., W. Yang, and D.M. Francis, Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. Journal of the American Society for Horticultural Science, 2004. 129(2): p. 250-257.
  • Seçgin, Z., et al., Selection of Root-Knot Nematod Resistance in Inbred Tomato Lines Using CAPS Molecular Markers. International Journal of Life Sciences and Biotechnology. 1(1): p. 10-16.
  • Raiola, A., et al., Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of inflammation, 2014. 2014.
  • Durmuş, M., Domates Bitkisinde Biyoteknolojik Çalışmalar ve GDO Tanısı, in Tarımsal Biyoteknoloji Anabilim Dalı. 2018, Ondokuz Mayıs Üniversitesi: Samsun. Türkiye.
  • Figueiredo-González, M., et al., Further insights on tomato plant: Cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 2017. 109: p. 386-392.
  • Figueiredo-Gonzalez, M., P. Valentao, and P.B. Andrade, Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Industrial crops and products, 2016. 94: p. 621-629.
  • Lopez, J., et al. Color and lycopene content of several commercial tomato varieties at different harvesting dates. in VII International Symposium on the Processing Tomato 542. 2000.
  • Dumas, Y., et al., Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 2003. 83(5): p. 369-382.
  • Aksoy, H.M., et al., Pseudomonas putida–Induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp. michiganensis. Biological Control, 2017. 105: p. 6-12.
  • Misra, B.B. and S. Dey, Phytochemical Analyses and Evaluation of Antioxidant Efficacy of in vitro Callus Extract of East Indian Sandalwood Tree (Santalum album L.). Journal of Pharmacognosy and Phytochemistry, 2012.
  • Marques, C., et al., Tomato Lycopene: Functional Proprieties and Health Benefits. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 2015. 9(10): p. 1089-1099.
  • Ganesh, N., K. Lakshmi, and V. Chandy, Lycopene properties, and its benefits in human health: a brief review. WJPPS, 2016. 5: p. 424-436.
  • Hwang, E.-S. and P.E. Bowen, Can the consumption of tomatoes or lycopene reduce cancer risk? Integrative cancer therapies, 2002. 1(2): p. 121-132.
  • Kopsell, D.A. and D.E. Kopsell, Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends in plant science, 2006. 11(10): p. 499-507.
  • Stewart, W., Balanced fertilization increases water use efficiency. News & Views. A regional newsletter published by the Potash & Phosphate Institute (PPI) and the Potash & Phosphate Institute of Canada (PPIC). 2001, Lubbocks Texas.
  • Simpson, K.L., Chemical changes in natural food pigments, in Chemical changes in food during processing. 1985, Springer. p. 409-441.
  • Krinsky, N.I. and E.J. Johnson, Carotenoid actions and their relation to health and disease. Molecular aspects of medicine, 2005. 26(6): p. 459-516.
  • Barba, A.O., et al., Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 2006. 95(2): p. 328-336.
  • Navarro-González, I., J. García-Alonso, and M.J. Periago, Bioactive compounds of tomato: Cancer chemopreventive effects and influence on the transcriptome in hepatocytes. Journal of Functional Foods, 2018. 42: p. 271-280.
  • Agarwal, A., et al., Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties. Journal of medicinal food, 2001. 4(1): p. 9-15.
  • Banihani, S.A., Tomato (Solanum lycopersicum L.) and type 2 diabetes. International Journal of Food Properties, 2018. 21(1): p. 99-105.
  • Shidfar, F., et al., The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein AI, homocysteine and blood pressure in type 2 diabetic patients. International journal of food sciences and nutrition, 2011. 62(3): p. 289-294.
  • Bulling, K., Engineering of polyphenol metabolism in tomatoes to enhance anti-cancer activities. 2013, University of East Anglia.
  • Bakir, S., et al., Tomato Polyphenolics: Putative Applications to Health and Disease, in Polyphenols: Mechanisms of Action in Human Health and Disease. 2018, Elsevier. p. 93-102.

Tomato Plant, Evaluation in terms of Nutrient Content and Healthy

Yıl 2018, Cilt: 1 Sayı: 2, 59 - 74, 18.12.2018
https://doi.org/10.38001/ijlsb.482443

Öz

The supply of food has become one of the most fundamental problems since the need for nutrition has existed in the globe. Throughout history, continuous agriculture and nutritional studies have been carried out and trying to resolve the problem of hunger. Especially after the second world war, revolutionary works were made to answer this need and provided short-term solutions for that period. According to result of many studies; chemical substances used, heavy metal stress as a result of wars and environmental pollution, which are one of the most important problems of our day, caused problems such as various cancer and cardiovascular diseases which are still untreatable. As a result of the researches, the problems along with diabetic diseases, heart attack, and stroke like diseases can be treated by using antioxidants which are abundant in tomato plant and these led to further studies on the tomato as source of antioxidants. The discovery of the anti-oxidative and anti-cancer properties of lycopene and the high availability of lycopene in tomato, the high self-fertilization, hybridization, ease pollination of the crop and especially the studies of genome-wide tomato plants in 2012 seen that increased the rate to find many anti-oxidative and anti-cancer remedies.The fact that tomatoes are rich
in vitamin A and vitamin C; the calories and faty content of tomatoes are low and that they are a fiber-free fruit without cholesterol is another reason for increasing their preference. In this review, the characteristics and production amounts of tomato plants and their effects on nutrient content and health are given. 

Kaynakça

  • Yüksek, A., İslam Hukukuna Göre Helal Gıda ve GDO’lu Ürünler. (Genetiği Değiştirilmiş Organizmalar). 2018, Bişkek: İz Basma.
  • Arvas, Y.E., Genetiği Değiştirilmiş Bitkiler ve Tanısı. 2017, Düsseldorf, Germany: Lambert Yayınevi.
  • Al-Remi, F., et al., Domates Bı̇tkı̇sı̇ Ve in Vı̇tro Mı̇kro Çoğaltımı (Tomato Plant and Its In Vitro Micropropagation). Journal of Engineering Technology and Applied Sciences, 2018. 3(1): p. 55-73.
  • Sönmez, K. and Ş.Ş. Ellİaltioğlu, Domates, karotenoidler ve bunları etkileyen faktörler üzerine bir inceleme. Derim, 2014. 31(2): p. 107-130.
  • Minoia, S., et al., A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC research notes, 2010. 3(1): p. 69.TomatoGenomeConsortium, The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012. 485(7400): p. 635-641.
  • Bai, Y. and P. Lindhout, Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Annals of botany, 2007. 100(5): p. 1085-1094.
  • Foolad, M.R., Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 2007. 2007.
  • Peralta, I.E. and D.M. Spooner, History, origin and early cultivation of tomato (Solanaceae). Genetic improvement of solanaceous crops, 2006. 2: p. 1-27.
  • Günay, A., Sebze yetiştiriciliği. Cilt-II, Meta Basımevi, İzmir, 2005.
  • FAOSTAT. 2011; Available from: http://faostat3.fao.org/faostat-gateway/go/to/download/Q/QC/E.
  • Goodenough, P.W., Tomato, cucumber and gherkin. Elsevier Science, 1991: p. pp.327-350.
  • Çakıroğlu, M., Metabolic and genomic profiling for taste and aroma traits in tomato (Solanum lycopersicum). 2017, İzmir Institute of Technology.
  • Anonymous. FAOSTAT. Agriculture Production Data. 2014; Available from: http://faostat.fao.org. [Erişim tarihi: 29.08.2018].
  • Dorais, M., et al., Greenhouse tomato fruit cuticle cracking. Horticultural Reviews, Volume 30, 2004: p. 163-184.
  • Tatar, M. and V. Pİrİnç, Türkiye Güneydoğu Anadolu Bölgesi’nin Sanayi Domatesi Üretim Potansiyeli. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2017. 7(2): p. 11-20.
  • FAO. Statistical Pocketbook World Food and Agriculture. Food and Agriculture Organisation of the United Nations. . 2017; Available from: http://www.fao.org/land-water/databases-and-software/en/ [Erişim Tarihi: 30.10.2018].
  • USDA. National Nutrient Database for Standard Reference Release 28. 2017; Available from: https://ndb.nal.usda.gov/ndb/foods/show/3223 [Erişim Tarihi: 29.10.2018].
  • TAGEM. Tarım Ürünleri Piyasaları Domates. Tarımsal Ekonomi ve Politika Geliştirme Enstitüsü (TAGEM). 2018; Available from: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Piyasalar%C4%B1/2018-Ocak%20Tar%C4%B1m%20%C3%9Cr%C3%BCnleri%20Raporu/2018-Ocak%20Domates.pdf [Erişim Tarihi: 28.10.2018].
  • Paduchuri, P., et al., Transgenic tomatoes—a review. Int J Adv Biotechnol Res, 2010. 1: p. 69-72.
  • Consortium, T.G., The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012. 485(7400): p. 635.
  • Martí, E., et al., Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of experimental botany, 2006. 57(9): p. 2037-2047.
  • Saito, T., et al., Tomatoma: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant and cell physiology, 2011. 52(2): p. 283-296.
  • Dorais, M., et al., Greenhouse tomato fruit cuticle cracking. Hort. Rev, 2004. 30: p. 163-184.
  • Kobayashi, M., et al., Genome-wide analysis of intraspecific DNA polymorphism in ‘Micro-Tom’, a model cultivar of tomato (Solanum lycopersicum). Plant and Cell Physiology, 2014. 55(2): p. 445-454.
  • Sant’Ana, D.V.P. and M. Lefsrud, Tomato proteomics: Tomato as a model for crop proteomics. Scientia Horticulturae, 2018. 239: p. 224-233.Petro‐Turza, M., Flavor of tomato and tomato products. Food Reviews International, 1986. 2(3): p. 309-351.
  • Kabelka, E., W. Yang, and D.M. Francis, Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. Journal of the American Society for Horticultural Science, 2004. 129(2): p. 250-257.
  • Seçgin, Z., et al., Selection of Root-Knot Nematod Resistance in Inbred Tomato Lines Using CAPS Molecular Markers. International Journal of Life Sciences and Biotechnology. 1(1): p. 10-16.
  • Raiola, A., et al., Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediators of inflammation, 2014. 2014.
  • Durmuş, M., Domates Bitkisinde Biyoteknolojik Çalışmalar ve GDO Tanısı, in Tarımsal Biyoteknoloji Anabilim Dalı. 2018, Ondokuz Mayıs Üniversitesi: Samsun. Türkiye.
  • Figueiredo-González, M., et al., Further insights on tomato plant: Cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food and Chemical Toxicology, 2017. 109: p. 386-392.
  • Figueiredo-Gonzalez, M., P. Valentao, and P.B. Andrade, Tomato plant leaves: From by-products to the management of enzymes in chronic diseases. Industrial crops and products, 2016. 94: p. 621-629.
  • Lopez, J., et al. Color and lycopene content of several commercial tomato varieties at different harvesting dates. in VII International Symposium on the Processing Tomato 542. 2000.
  • Dumas, Y., et al., Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. Journal of the Science of Food and Agriculture, 2003. 83(5): p. 369-382.
  • Aksoy, H.M., et al., Pseudomonas putida–Induced response in phenolic profile of tomato seedlings (Solanum lycopersicum L.) infected by Clavibacter michiganensis subsp. michiganensis. Biological Control, 2017. 105: p. 6-12.
  • Misra, B.B. and S. Dey, Phytochemical Analyses and Evaluation of Antioxidant Efficacy of in vitro Callus Extract of East Indian Sandalwood Tree (Santalum album L.). Journal of Pharmacognosy and Phytochemistry, 2012.
  • Marques, C., et al., Tomato Lycopene: Functional Proprieties and Health Benefits. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 2015. 9(10): p. 1089-1099.
  • Ganesh, N., K. Lakshmi, and V. Chandy, Lycopene properties, and its benefits in human health: a brief review. WJPPS, 2016. 5: p. 424-436.
  • Hwang, E.-S. and P.E. Bowen, Can the consumption of tomatoes or lycopene reduce cancer risk? Integrative cancer therapies, 2002. 1(2): p. 121-132.
  • Kopsell, D.A. and D.E. Kopsell, Accumulation and bioavailability of dietary carotenoids in vegetable crops. Trends in plant science, 2006. 11(10): p. 499-507.
  • Stewart, W., Balanced fertilization increases water use efficiency. News & Views. A regional newsletter published by the Potash & Phosphate Institute (PPI) and the Potash & Phosphate Institute of Canada (PPIC). 2001, Lubbocks Texas.
  • Simpson, K.L., Chemical changes in natural food pigments, in Chemical changes in food during processing. 1985, Springer. p. 409-441.
  • Krinsky, N.I. and E.J. Johnson, Carotenoid actions and their relation to health and disease. Molecular aspects of medicine, 2005. 26(6): p. 459-516.
  • Barba, A.O., et al., Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 2006. 95(2): p. 328-336.
  • Navarro-González, I., J. García-Alonso, and M.J. Periago, Bioactive compounds of tomato: Cancer chemopreventive effects and influence on the transcriptome in hepatocytes. Journal of Functional Foods, 2018. 42: p. 271-280.
  • Agarwal, A., et al., Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties. Journal of medicinal food, 2001. 4(1): p. 9-15.
  • Banihani, S.A., Tomato (Solanum lycopersicum L.) and type 2 diabetes. International Journal of Food Properties, 2018. 21(1): p. 99-105.
  • Shidfar, F., et al., The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein AI, homocysteine and blood pressure in type 2 diabetic patients. International journal of food sciences and nutrition, 2011. 62(3): p. 289-294.
  • Bulling, K., Engineering of polyphenol metabolism in tomatoes to enhance anti-cancer activities. 2013, University of East Anglia.
  • Bakir, S., et al., Tomato Polyphenolics: Putative Applications to Health and Disease, in Polyphenols: Mechanisms of Action in Human Health and Disease. 2018, Elsevier. p. 93-102.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Mukaddes Durmuş

Özlem Yetgin Bu kişi benim

Mohamed Majed Abed

Esmail Kelil Haji Bu kişi benim

Kazım Akçay Bu kişi benim

Yayımlanma Tarihi 18 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

EndNote Durmuş M, Yetgin Ö, Abed MM, Haji EK, Akçay K (01 Aralık 2018) Domates Bitkisi, Besin İçeriği ve Sağlık Açısından Değerlendirmesi. International Journal of Life Sciences and Biotechnology 1 2 59–74.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366