Araştırma Makalesi
BibTex RIS Kaynak Göster

Improvement of Bioavailability of Sage and Mint by Ultrasonic Extraction

Yıl 2019, Cilt: 2 Sayı: 2, 122 - 135, 12.08.2019
https://doi.org/10.38001/ijlsb.582148

Öz

Plant extracts are complex mixtures obtained from fruites, leaves, flowers, woods, resins and seeds of a fresh or dried plant by various methods. Because of the disadvantages of conventional extraction methods such as ultrasound assisted systems have drawn higher attention in recent years.

In this study, the ultrasound-assisted extraction(USE) conditions(temperature, time, ultrasonication power and solvent-solid ratio) were determined for the production of crude extracts from sage (Salvia officinalis) and mint (Mentha piperita). Bioavailability of the plant extracts were also compared to those obtained by classical hot-water extraction (HWE).  USE parameters for the highest yield were 40 0C, 10 min, 400 W, as determined by preliminary experiements. Total peholic contents of the mint and sage samples increased by ultrasound assisted liquid extraction method at the levels of 23.88 % and 14.97 %, respectively. The bioavailability of total phenolic contents in classis and ultrasound extraction of mint (Mentha piperita) extract was 20.11 %, 32.45 % respectively. In conclusion, the results of the present study showed that ultrasound assisted extraction was more effective method for extraction of bioactive substances from sage and mint with shorther extraction time, increased bioactivity and bioavailability.

Kaynakça

  • 1. Demirezer LO, A, Bergere I, Schiewe H-J, and Zeeck A: The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry 58, 1213–1217, 2001.
  • 2. Sağdıç, O., Özkan, G., Göktürk Baydar, N., 2005. Yeni bitkisel doğal bir antimikrobiyal ve antioksidan: Üzüm posası. Gıda Teknolojisi, 9 (4): 78-80.
  • 3. Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram O., Yetim H. 2011. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology, 148, 30-35.
  • 4. Sagdic, O., Ozturk, I., Yilmaz, M. T., Yetim, H., 2011. Effect of Grape Pomace Extracts Obtained from Different Grape Varieties on Microbial Quality of Beef Patty. Journal of Food Science, 76 (7): M515-M521.
  • 5. Ozkan, G., Sagdic, O., Ekici, L., Ozturk, I., Ozcan, M.M. 2007. Phenolic compounds of Turkish endemic Origanum sipyleum L. extract, and its antioxidant and antibacterial activities. Journal of Food Lipids, 14, 157-169.
  • 6. Cock, I.E. and Kukkonen, L. 2011. An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities. Pharmacog. Res. 3 (2):85-94
  • 7. Aleksandar Rašković,1 Isidora Milanović,2 Nebojša Pavlović,1 Tatjana Ćebović,3Saša Vukmirović,1 and Momir Mikov1 Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential BMC Complementary and Alternative Medicine 2014, 14:225
  • 8. Vesoul J, Cock IE (2011) An examination of the medicinal potential of Pittosporum phylliraeoides: toxicity, antibacterial and antifungal ac- tivities. Pharmacogn Commun 1(2):8–17
  • 9. Pujol J (1990) Naturafrica – the herbalists handbook. Jean Pujol Natural healers foundation, Durban South Africa
  • 10. Ignat I, Volf I, Popa VI. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem, 126, 1821-1835.
  • 11. Wang, M. (1998). Isolation and structural elucidation of aroma constituents bound as glycosides from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46(7): 2509-2511.
  • 12. Zeybek, U. Ve Zeybek, N. (2002). Farmasötik Botanik [Kapalı Tohumlu Bitkiler (Angiospermae) Sistematiği ve Önemli Maddeleri]. Ege Üniversitesi Eczacılık Fakültesi Yayınları, S.380.
  • 13. Vladimir-Knezevi_c S, Blazekovi_c B, Kindl M, Vladi_c J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014;19:767782.
  • 14. Kamatou, G. P., Makunga, N. P., Ramogola, W. P. Ve Viljoen, A. M. (2008). South African Salvia species: a review of biological activities and phytochemistry. Journal Of Ethnopharmacology, 119(3):664-72.
  • 15. Li, B., Zhang, C., Peng, L., Liang, Z., Yan, X., Zhu, Y. Ve Liu, Y. (2015). Comparison of essential oil composition and phenolic acid content of selectedSalviaspecies measured by GC–MS and HPLC methods, Industrial Crops and Products, 69:329-334.
  • 16. Eidi, A. Ve Eidi, M. (2009). Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes&Metabolic Syndromes:Clinical Research&Reviews, 3(1):40-44.
  • 17. Bupesh G, Amutha C, Nandagopal S, Ganeshkumar A, Sureshkumar P, Murali KS. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts e a medicinal plant. Acta Agric Slov. 2007;89:73e79.
  • 18. 80. Sharafi SM, Rasooli I, Owlia P, Taghizadeh M, Darvish S, Astaneh A. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn Mag. 2010;6:147e153.
  • 19. Perez-Serradilla JA, Capote PF, Castro LMD, 2007. Simultaneous utrasound-asisted emulsification-extraction of polar and nonpolar compounds from solid plant samples. Analytical Chemistry, 79: 6767-6774.
  • 20. Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17: 300-312.
  • 21. Shah, M.V.; Rohit, M.C. Novel Techniques for Isolation and Extraction of Phyto-Constituents from Herbal 
Plants. Am. J. Phytomed. Clin. Ther. 2013, 1, 338–350.
  • 22. Ballard, T. S., Mallikarjunan, P., Zhou, K., & O'Keefe, S. (2010). Microwave-assisted ex- traction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120, 1185–1192.
  • 23. Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) fromor- ange (Citrus sinensis L.) peel. Food Chemistry, 119, 851–858.
  • 24. Z. Ilbay, S. Sahin, S.I. Kirbaslar, Optimisation of ultrasound-assisted extraction of rosehip (Rosa canina L.) with response surface methodology, J. Sci. Food Agric. 93 (2013) 2804–2809.
  • 25. Domeno, C., Blasco, M., Sanchez, C., Nerin, C.: A fast extraction technique for extract- ing polycyclic aromatic hydrocarbons (PAHs) from lichens samples used as biomonitors of air pollution: Dynamic sonication versus other methods. Analytica Chimica Acta, 569(1-2), 103 (2006)
  • 26. Hyotylainen, T., Riekkola, M.L.: Potential of effective extraction techniques and new analytical systems for profiling the marine environment. Trac-Trends in Analytical Chemistry, 26(8), 788 (2007)
  • 27. Virot, M., Tomao, V., Le Bourvellec, C., Renard, M.C.G.C., ve Chemat F., (2010). “Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction”. Ultrasonics Sonochem, 17: 1066-1074.28. Chemat, F., Tomao, V., ve Virot, M., (2008). “Ultrasound- assisted extraction in food analysis”. In: Handbook of Food Analysis Instruments by Semih Ötles, Boca Raton, Florida, USA: CRC pres: 85–103.
  • 29. Alminger, M., Aura, A. M., Bohn, T., Dufour, C., El, S. N., Gomes, A., Karakaya, S., Martínez-Cuesta, M. C., McDougall, G. J., Requena, T., & Santos, C. N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13, 413– 436.
  • 30. C. H. Versantvoort, A. G. Oomen, E. Van de Kamp, C. J. Rompelberg and A. J. Sips, Food Chem. Toxicol., 2005, 43, 31–40. 
31. McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. 2005. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53: 5896-5904.
  • 31. Kamiloğlu S., Paslı A.A., Çapanoğlu E., Özçelik B., Kuru Meyvelerin Kuruyemişler ile Birlikte Tüketiminin Flavonoidlerin in Vitro Biyoyararlılığına Etkisinin İncelenmesi. GIDA (2014) 39 (4): 227-233

Ultrasonik Ekstraksiyon ile Adaçayı ve Nanenin Biyoyararlılığının Geliştirilmesi

Yıl 2019, Cilt: 2 Sayı: 2, 122 - 135, 12.08.2019
https://doi.org/10.38001/ijlsb.582148

Öz

Bitkisel ekstraktlar, taze veya kurutulmuş bir bitkinin meyvelerinden,
yapraklarından, çiçeklerinden, odunlarından, reçinelerinden ve çekirdeklerinden
çeşitli yöntemlerle elde edilen karmaşık karışımlardır. Geleneksel ekstraksiyon
uygulamaları çok uzun zaman almakta ve büyük miktarlarda solvente ihtiyaç
duyulmaktadır. Ultrason destekli sistemlerin ekstraksiyonda kullanımı
konusundaki çalışmalar son yıllarda giderek artmaktadır.

 

Bu çalışmada, adaçayı (Salvia officinalis) ve nane (Mentha piperita) 'dan
elde edilen ham özütlerin üretimi için ultrason destekli ekstraksiyon (USE)
koşulları (sıcaklık, zaman, ultrason gücü ve çözücü-katı oranı) belirlenmiştir.
Bitki ekstrelerinin biyoyararlanımı ayrıca klasik sıcak su ekstraksiyonu (HWE)
ile elde edilenlerle karşılaştırıldı. Ön denemelerle belirlenen en yüksek
ekstraksiyon veriminin elde edildiği paremetreler 40 ° C, 10 dak, 400 W
kullanılmıştır. Nane numunelerinin toplam fenolik içeriği, ultrason destekli
sıvı ekstraksiyon yöntemiyle% 23.88 oranında artarken, adaçayı numuneleri% 14.97
arttı. Nane (Mentha Piperita) ekstrelerinin klasik ve ultrason ekstraksiyonunda
toplam fenolik içeriğin biyoyararlanımı sırasıyla % 20.11,% 32.45 idi.

 









Bu çalışmanın sonuçları gösteriyor ki, ultrason destekli ekstraksiyon, tıbbi
bitkilerden biyoaktif maddelerin elde edilmesinde klasik yönteme göre daha
verimli olmuştur. Biyoaktif madde miktarını arttırırken,
biyoyararlılıklarını  da arttırmıştır.

Kaynakça

  • 1. Demirezer LO, A, Bergere I, Schiewe H-J, and Zeeck A: The structures of antioxidant and cytotoxic agents from natural source: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry 58, 1213–1217, 2001.
  • 2. Sağdıç, O., Özkan, G., Göktürk Baydar, N., 2005. Yeni bitkisel doğal bir antimikrobiyal ve antioksidan: Üzüm posası. Gıda Teknolojisi, 9 (4): 78-80.
  • 3. Tornuk, F., Cankurt, H., Ozturk, I., Sagdic, O., Bayram O., Yetim H. 2011. Efficacy of various plant hydrosols as natural food sanitizers in reducing Escherichia coli O157:H7 and Salmonella Typhimurium on fresh cut carrots and apples. International Journal of Food Microbiology, 148, 30-35.
  • 4. Sagdic, O., Ozturk, I., Yilmaz, M. T., Yetim, H., 2011. Effect of Grape Pomace Extracts Obtained from Different Grape Varieties on Microbial Quality of Beef Patty. Journal of Food Science, 76 (7): M515-M521.
  • 5. Ozkan, G., Sagdic, O., Ekici, L., Ozturk, I., Ozcan, M.M. 2007. Phenolic compounds of Turkish endemic Origanum sipyleum L. extract, and its antioxidant and antibacterial activities. Journal of Food Lipids, 14, 157-169.
  • 6. Cock, I.E. and Kukkonen, L. 2011. An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities. Pharmacog. Res. 3 (2):85-94
  • 7. Aleksandar Rašković,1 Isidora Milanović,2 Nebojša Pavlović,1 Tatjana Ćebović,3Saša Vukmirović,1 and Momir Mikov1 Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential BMC Complementary and Alternative Medicine 2014, 14:225
  • 8. Vesoul J, Cock IE (2011) An examination of the medicinal potential of Pittosporum phylliraeoides: toxicity, antibacterial and antifungal ac- tivities. Pharmacogn Commun 1(2):8–17
  • 9. Pujol J (1990) Naturafrica – the herbalists handbook. Jean Pujol Natural healers foundation, Durban South Africa
  • 10. Ignat I, Volf I, Popa VI. 2011. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem, 126, 1821-1835.
  • 11. Wang, M. (1998). Isolation and structural elucidation of aroma constituents bound as glycosides from sage (Salvia officinalis). Journal of Agricultural and Food Chemistry, 46(7): 2509-2511.
  • 12. Zeybek, U. Ve Zeybek, N. (2002). Farmasötik Botanik [Kapalı Tohumlu Bitkiler (Angiospermae) Sistematiği ve Önemli Maddeleri]. Ege Üniversitesi Eczacılık Fakültesi Yayınları, S.380.
  • 13. Vladimir-Knezevi_c S, Blazekovi_c B, Kindl M, Vladi_c J, Lower-Nedza AD, Brantner AH. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014;19:767782.
  • 14. Kamatou, G. P., Makunga, N. P., Ramogola, W. P. Ve Viljoen, A. M. (2008). South African Salvia species: a review of biological activities and phytochemistry. Journal Of Ethnopharmacology, 119(3):664-72.
  • 15. Li, B., Zhang, C., Peng, L., Liang, Z., Yan, X., Zhu, Y. Ve Liu, Y. (2015). Comparison of essential oil composition and phenolic acid content of selectedSalviaspecies measured by GC–MS and HPLC methods, Industrial Crops and Products, 69:329-334.
  • 16. Eidi, A. Ve Eidi, M. (2009). Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats. Diabetes&Metabolic Syndromes:Clinical Research&Reviews, 3(1):40-44.
  • 17. Bupesh G, Amutha C, Nandagopal S, Ganeshkumar A, Sureshkumar P, Murali KS. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts e a medicinal plant. Acta Agric Slov. 2007;89:73e79.
  • 18. 80. Sharafi SM, Rasooli I, Owlia P, Taghizadeh M, Darvish S, Astaneh A. Protective effects of bioactive phytochemicals from Mentha piperita with multiple health potentials. Pharmacogn Mag. 2010;6:147e153.
  • 19. Perez-Serradilla JA, Capote PF, Castro LMD, 2007. Simultaneous utrasound-asisted emulsification-extraction of polar and nonpolar compounds from solid plant samples. Analytical Chemistry, 79: 6767-6774.
  • 20. Wang L, Weller CL. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17: 300-312.
  • 21. Shah, M.V.; Rohit, M.C. Novel Techniques for Isolation and Extraction of Phyto-Constituents from Herbal 
Plants. Am. J. Phytomed. Clin. Ther. 2013, 1, 338–350.
  • 22. Ballard, T. S., Mallikarjunan, P., Zhou, K., & O'Keefe, S. (2010). Microwave-assisted ex- traction of phenolic antioxidant compounds from peanut skins. Food Chemistry, 120, 1185–1192.
  • 23. Khan, M. K., Abert-Vian, M., Fabiano-Tixier, A. S., Dangles, O., & Chemat, F. (2010). Ultrasound-assisted extraction of polyphenols (flavanone glycosides) fromor- ange (Citrus sinensis L.) peel. Food Chemistry, 119, 851–858.
  • 24. Z. Ilbay, S. Sahin, S.I. Kirbaslar, Optimisation of ultrasound-assisted extraction of rosehip (Rosa canina L.) with response surface methodology, J. Sci. Food Agric. 93 (2013) 2804–2809.
  • 25. Domeno, C., Blasco, M., Sanchez, C., Nerin, C.: A fast extraction technique for extract- ing polycyclic aromatic hydrocarbons (PAHs) from lichens samples used as biomonitors of air pollution: Dynamic sonication versus other methods. Analytica Chimica Acta, 569(1-2), 103 (2006)
  • 26. Hyotylainen, T., Riekkola, M.L.: Potential of effective extraction techniques and new analytical systems for profiling the marine environment. Trac-Trends in Analytical Chemistry, 26(8), 788 (2007)
  • 27. Virot, M., Tomao, V., Le Bourvellec, C., Renard, M.C.G.C., ve Chemat F., (2010). “Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction”. Ultrasonics Sonochem, 17: 1066-1074.28. Chemat, F., Tomao, V., ve Virot, M., (2008). “Ultrasound- assisted extraction in food analysis”. In: Handbook of Food Analysis Instruments by Semih Ötles, Boca Raton, Florida, USA: CRC pres: 85–103.
  • 29. Alminger, M., Aura, A. M., Bohn, T., Dufour, C., El, S. N., Gomes, A., Karakaya, S., Martínez-Cuesta, M. C., McDougall, G. J., Requena, T., & Santos, C. N. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13, 413– 436.
  • 30. C. H. Versantvoort, A. G. Oomen, E. Van de Kamp, C. J. Rompelberg and A. J. Sips, Food Chem. Toxicol., 2005, 43, 31–40. 
31. McDougall GJ, Dobson P, Smith P, Blake A, Stewart D. 2005. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53: 5896-5904.
  • 31. Kamiloğlu S., Paslı A.A., Çapanoğlu E., Özçelik B., Kuru Meyvelerin Kuruyemişler ile Birlikte Tüketiminin Flavonoidlerin in Vitro Biyoyararlılığına Etkisinin İncelenmesi. GIDA (2014) 39 (4): 227-233
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Kubra Dogan

Perihan Kubra Akman Bu kişi benim

Fatih Törnük Bu kişi benim

Yayımlanma Tarihi 12 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

EndNote Dogan K, Akman PK, Törnük F (01 Ağustos 2019) Improvement of Bioavailability of Sage and Mint by Ultrasonic Extraction. International Journal of Life Sciences and Biotechnology 2 2 122–135.


Sosyal ağlarda bizi takip edin   19277 19276 20153 22366