Antarktika: Yaşam Bilimleri ve Biyoteknoloji Araştırmalarının Gözden Geçirilmesi
Yıl 2021,
Cilt: 4 Sayı: 1, 158 - 177, 15.04.2021
Suleyman Faruk Kırkıncı
Sevgi Maraklı
,
Hasan Murat Aksoy
,
Didem Özçimen
,
Yilmaz Kaya
Öz
Yeryüzünde insanlar tarafından en son keşfedilen, en yüksek, en soğuk, en kurak ve nufüs yoğunluğu en az olan kıta Antarktika’dır. Aynı zamanda yeryüzünün kullanılabilen tatlı su kaynaklarının yaklaşık % 70’i buz halinde bu kıtada bulunmaktadır. Bu özellikleriyle geçmişten günümüze insan eli değmeden, insan yaşamı olmadığı halde canlı yaşama doğal seleksiyon ile devam etmiştir. Antarktika, üzerinde barındırdığı doğal yaşam habitatlarıyla, bilim insanları için sınırları tüm kıta olan eşsiz bir laboratuvar gibidir. Antarktika’da az sayıda olmakla birlikte kıtaya özgü olan hayvan ve bitki türleri ile çeşitli alg, liken ve mikroorganizma türleri bulunmaktadır. Günümüz bilim insanları bu canlı formları üzerinde araştırmalar yaparak, küresel ısınma ve çevre problemleri gibi güncel sorunlara bir çözüm aramaktadırlar. Kıtadan izole edilen bazı türler, enzimler ve genlerle başta biyolojik kontrol olmak üzere biyoteknoloji ve birbirinden farklı alanlarda çalışmalar devam etmektedir. Bu çalışmada Antarktika’da yaşam bilimleri ve biyoteknoloji araştırmaları gözden geçirilmiştir.
Destekleyen Kurum
Türkiye Cumhuriyeti Cumhurbaşkanlığı, Sanayi ve Teknoloji Bakanlığı, İş bankası, Tubitak, TÜBA
Teşekkür
Tüm yazarlar; Cumhurbaşkanlığı himayesinde, Sanayi ve Teknoloji Bakanlığı uhdesinde ve İTÜ Kutup Araştırmaları Uyg-Ar Merkezi koordinasyonunca gerçekleştirilen TAE-III ve İş Bankası sponsorluğunda gerçekleştirilen TASE-I seferlerinde desteklenen projelerinden dolayı teşekkürlerini sunar. Prof. Dr. Didem Özçimen, yapmış olduğu kutup çalışmalarına desteklerinden dolayı, 120Z292 no’lu proje kapsamında TÜBİTAK ve TÜBA-GEBİP Ödülü kapsamında TÜBA’ya teşekkürlerini sunar.
Kaynakça
- 1. WorldAtlas 2018. https://www.worldatlas.com/articles/what-are-the-origins-of-the-names-arctic-and-antarctica.html
- 2. Liddell, H. G., Scott, R., Crane, G., Stuart Jones, H. and McKenzie, R., A Greek-English Lexicon Antarctica. Oxford: Clarendon Press, 2002.
- 3. Encyclopædıa Brıtannıca 2019. https://www.britannica.com/place/Antarctica
- 4. World Geography 2019. https://www.enchantedlearning.com/geography/continents/Land.shtml
- 5. Scott K. N., Ice and Mineral Resources. In: Liggett D., Storey B., Cook Y., Meduna V. (eds)
Exploring the Last Continent. Springer Cham., 2015.
- 6. Burcu Özsoy (2020). Küresel Salgınlar Kutup Bölgelerinde Öğreneceklerimiz ve Geleceğimiz. Küresel Salgının Anatomisi: İnsan ve Toplumun Geleceği. Tuba Bilimler Akademesi. 978-605-2249-46-8
- 7. Encyclopedia 2020. https://www.encyclopedia.com/people/history/explorers-travelers-and-conquerors-biographies/james-cook
- 8. Ingrıd Hebel, Carolına Galleguıllos, Rıcardo Jaña and Marıa D.C. Dacasa-Rüdınger, Early knowledge of Antarctica’s vegetation: Expanding past and current evidence. Revista Chilena de Historia Natural, 2012. 85: p.409-418.
- 9. Harris, C. M. & Meadows, J., Environmental management in Antarctica Instruments and institutions. Marine Pollution Bulletin, 1992. 25(9-12): p.239–249.
- 10. Stewart, J., Antarctica an Encyclopedia, Second edition. McFarland & Company Inc., North Carolina, U.S.A., 2011.
- 11. Barrett, J. E., et al., Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology, 2004. 85: p.3105-3118.
- 12. Thomas, D. N. et al., The biology of polar regions. Oxford University Press, Oxford, UK, 2008.
- 13. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological monographs, 2014. 84, p.203-244
- 14. Convey, P. and Stevens, M. I., Antarctic biodiversity. Science, 2007. 317(5846): p.1877-1878.
- 15. Gilbert, J. A. et al., Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology, 2004. 150(1): p.171-180.
- 16. British Antarctic Survey 2020. https://www.bas.ac.uk/about/antarctica/wildlife/plants/
- 17. Amosova, A. V. Et al., Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PloS one, 2015. 10(9).
- 18. Ruhland, C. T. et al., The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica. Photochemistry Photobiology, 2005. 81(5): p.1086-1093.
- 19. Pascual-Díaz, J.P., Serçe, S., Hradecká, I. et al. Genome size constancy in Antarctic populations of Colobanthus quitensis and Deschampsia antarctica. Polar Biol 43, 1407–1413 (2020). https://doi.org/10.1007/s00300-020-02699-y
- 20. Lee, J. et al., Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One, 2014. 9(3).
- 21. Romero, M., Casanova, A., Iturra, G., Reyes, A., Montenegro, G. and Alberdi, M. 1999. Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411-425.
- 22. Barcikowski, A., Czaplewska, J., Giełwanowska, I., Loro, P., Smykla, J. and Zarzycki, K. 2001. Deschampsia antarctica (Poaceae)–the only native grass from Antarctica. Studies on grasses in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences, 367-377.
- 23. Byun, M. Y., Lee, J., Cui, L. H., Kang, Y., Oh, T. K., Park, H., Lee, H. and Kim, W. T. 2015. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science, 236, 61-74.
- 24. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Zoshchuk, S. A., Andreev, I. O., Badaeva, E. D., Kunakh, V. A. and Muravenko, O. V. 2015. Molecular cytogenetic analysis of Deschampsia antarctica Desv.(Poaceae), maritime Antarctic. PloS One, 10:9, e0138878.
- 25. John, U. P., Polotnianka, R. M., Sivakumaran, K. A., Chew, O., MacKin, L., Kuiper, M. J., Talbot, J. P., Nugent, G. D., Mautord, J. and Schrauf, G. E. 2009. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant, Cell & Environment, 32:4, 336-348.
- 26. Rabert, C., Gutiérrez-Moraga, A., Navarrete-Gallegos, A., Navarrete-Campos, D., Bravo, L. and Gidekel, M. 2014. Expression of a Deschampsia antarctica Desv. polypeptide with lipase activity in a Pichia pastoris vector. International Journal of Molecular Sciences, 15:2, 2359-2367
- 27. Kucuk, C., Bitki Probiyotik Bakteriler: Bitkiler Üzerindeki Rolleri ve Uygulamalar. International Journal of Life Sciences and Biotechnology, 2019. 2(1): p.1-15.
- 28. Kucuk, C. and A. Almaca, Bitki gelişimini teşvik eden rizobakteriler tarafından üretilen metabolitler ve bitki gelişimine etkileri. International Journal of Life Sciences and Biotechnology, 2020. 3(1): p.81- 94.
- 29. Podolich, O. et al., First record of the endophytic bacteria of Deschampsia antarctica E. Desv. from two distant localities of the maritime Antarctica. bioRxiv, 2019.
- 30. Kaya, Y., In vitro Plant Regeneration of Tobacco. Universiti Teknologi Malaysia: Malaysia in Faculty of Biosciences and Bioengineering, 2010.
- 31. Kaya, Y. and S. Karakütük, Farklı büyüme düzenleyicilerin Türk kır çeltiği rejenerasyonuna etkisi. Anadolu Tarım Bilimleri Dergisi, 2018. 33(3): p.226-231.
- 32. Hussain, A., Qarshi, I. A., Nazir, H. and Ullah, I., Plant tissue culture: current status and opportunities. Recent advances in plant in vitro culture, 2012. p.1-28.
- 33. Cuba, M. et al., Micropropagation of Deschampsia antarctica a frost-resistant Antarctic plant. Antarctic Science, 2005. 17(1): p.69-70.
- 34. Osorio, J. et al., The effects of growth regulators and a scanning electron microscope study of somatic embryogenesis in Antartic hair grass (Deschampsia antarctica Desv.). Polar Biology, 2014. 37: p.217-225.
- 35. Marely, C. D. et al., Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Scientific Reports, 2020. 10: p.1.
- 36. Cuba-Díaz, M., Cerda, G., Rivera, C., & Gómez, A. (2016). Genome size comparison in Colobanthus quitensis populations show differences in species ploidy. Polar Biology, 40(7), 1475–1480. doi:10.1007/s00300-016-2058-z
- 37. Marhold, K., et al., IAPT chromosome data 30/2. Taxon, 2019. 68(5): p.1124-1130.
- 38. Gielwanowska, I., Bochenek, A. and Szczuka, E., Development of the pollen in the Antarctic flowering plant Colobanthus quitensis [Kunth] Bartl. Acta Agrobotanica, 2007. 60:2.
- 39. Cuba-Díaz, M., Acuña, D., Cordero, C. M., and Klagges, M., Optimización de parámetros para la propagación in vitro de Colobanthus quitensis (Kunth) Bartl. Gayana Botánica, 2014. 71(1): p.58-67
- 40. Zúñiga, G. E. et al., Micropropagation of Antarctic Colobanthus quitensis. Antarctic Science, 2009. 21(2): p.149-150
- 41. Smıth, R. I. L., Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws, R. M., ed. Antarctic biology. Academic Press, 1984. p.61-162.
- 42. Moore, D. M., Studies in Colobanthus quitensis (Kunth) Bartl.and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. British Antarctic Survey Bulletin, 1970. 23: p.63-80.
- 43. Convey, P., Reproduction of Antarctic flowering plants. Antarctic Science, 1996. 8: p.127-134.
- 44. Vera, M. L., Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Research, 2011. 30(1): p.7146.
- 45. Cannone, N. et al., S. Vascular plants changes in extreme environments: effect of multiple drivers. Climatic Change, 2016. 134(4): p.651-665.
- 46. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014. 80(2): p.203-244.
- 47. Hughes L., Biological consequences of global warming: Is the signal already, Trends in ecology & evolution, 2000. 15(2): p.56-61.
- 48. Bravo, L. A. et al., Cold resistance in antarctic angiosperms. Physiologia Plantarum, 2001. 111: p.55-65.
- 49. Oldham , P. D. and Kindness, J., Biodiversity Research and Innovation in Antarctica and the Southern Ocean. bioRxiv, 2020.
- 50. Torres-Díaz C, Gallardo-Cerda J, Lavin P, Oses R, Carrasco-Urra F, Atala C, et al. (2016) Biological Interactions and Simulated Climate Change Modulates the Ecophysiological Performance of Colobanthus quitensis in the Antarctic Ecosystem. PLoS ONE 11(10): e0164844. https://doi.org/10.1371/journal.pone.0164844.
- 51. Smith, R. L., Vascular plants as bioindicators of regional warming in antarctica. Oecologia, 1994. 99: p.322-328.
- 52. Pérez-Torres, E. et al., The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 2004. 31(7): p.731-741.
- 53. Rozema, J. et al. The role of uv-b radiation in aquatic and terrestrial ecosystems an experimental and functional analysis of the evolution of uv-absorbing compounds. Journal of Photochemistry and Photobiology B-biology, 2002. 66(2): p.12.
- 54. Salvucci, M. E. and Crafts-Brandner S. J., Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology, 2004. 134: 1460-1470.
- 55. Gidekel, M. et al., Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica desv. Extremophiles, 2003. 7: p.459-469
- 56. German, S., Peter, J. U. And Martina, P. R., Ice recrystallisation inhibition protein or antifreeze proteins from deschampsia, lolium and festuca species of grass. WO, 2005
- 57. Manuel, G., Ana, G., Leal, P., Luis, D. B., Jorge, D. and Emilio, G., Plant promoter. US 7273931 B2, 2007. https://lens.org/053-289- 529-443-956
- 58. Bravo, L. A. and Griffith, M., Characterization of antifreeze activity in antarctic plants. Journal of Experimental Botany, 2005. 56: p.1189-1196.
- 59. Manuel G, Lucas MCR, Gustavo CB, Carlos SL, Ana GM, Pablo PRJ, et al. Agent for cutaneous photoprotection against uva/uvb rays [Internet]. US 8357407 B2, 2013. Available: https://lens.org/004-963- 1699 859-833-206
- 60. Cuba-Díaz, M., Rivera-Mora, C., Navarrete, E. et al. Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Sci Rep 10, 3845 (2020). https://doi.org/10.1038/s41598-020-60533-1.
61. Nemergut, D. R. et al., Structure and function of alpine and arctic soil microbial communities. Research in microbiology, 2005. 156(7): p.775-784.
- 62. Sabbe, K., E. et al., Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science, 2003. 15(2): p.227-248.
- 63. Convey, P. and Stevens, M. I., Antarctic biodiversity. Science, 2007. 317(5846): p.1877-1878.
- 64. Jakosky, B. M., et al., Subfreezing activity of microorganisms and the potential habitability of Mars'polar regions. Astrobiology, 2003, 3:2: 343-350.
- 65. Vincent W.F., Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science, 2000. 12: p.374-385.
- 66. Friedmann E.I. (ed), Antarctic microbiology. John Wiley & Sons, 1993.
- 67. Gibson, J.A.E. et al., Biogeographic trends in Antarctic lake communities; In Trends in Antarctic Terrestrial and Limnetic Ecosystems. Bergstrom, D. M., Convey, P. and Huiskes, A.H.L. (eds.) Springer, (2006a). p.71-99.
- 68. Simmons, B. L., Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 2009. 41(10): 2052-2060
- 69. Aislabie, J. M., Jordan, S. and Barker, G. M., Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 2008. 144: p.9-20.
- 70. Tytgat, B., et al., Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiology Ecology, 2016. 92(9).
- 71. Papale, M. et al., Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica). Soil Biology & Biochemistry, 2018. 123: p.165-179.
- 72. Koo, H. et al., Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems. Life, 2018. 8(3): 29.
- 73. Shivaji, S., Bacterial biodiversity, cold adaptation and biotechnological importance of bacteria occurring in Antarctica. Proceedings of the Indian National Science Academy, 2017. 83: p.327-352.
- 74. Laybourn-Parry, J., Quayle, W. and Henshaw, T., The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biology, 2002. 25(7): p.542-552.
- 75. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014. 84: p.203-244.
- 76. Yergeau, E. et al., Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 2007. 59: p.436-451.
- 77. Dennis, P. G. et al., Soil fungal community composition does not alter along latitudinal gradient through the maritime and sub- Antarctic. Fungal Ecology, 2012. 5: p.403-408.
- 78. Niederberger, T. D. et al., Microbial community composition in soils of Northern Victoria Land, Antarctica. Environmental Microbiology, 2008. 10: p.1713-1724.
- 79. Cary, S. C. et al., On the rocks: microbial ecology of Antarctic cold desert soils. Nature Reviews Microbiology, 2010. 8: p.129-138.
- 80. Chong, C. W. et al., Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 2012. 181: p.45-55.
- 81. Vyverman, W. et al., Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 2010. 4: 103-113.
- 82. Cary, S. C. et al., On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 2010. 8(2): 129.
- 83. Adams, B. J. et al., Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 2006. 38(10): 3003-3018.
- 84. Pearce, D. A. et al., Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 2009. 69(2): 143-157.
- 85. Süleyman Faruk Kırkıncı (2020). Antarktika kaynakli örneklerden dalapon herbisitini parçalayan bakterilerin izolasyonu, karakterizasyonu ve tanisi. Ondokuz Mayıs Universitesi Yuksek Lısans tezi
- 86. Ozcimen,D., Kocer, A.T., Inan,B., Celik,A., Edbeib,M.F., Aksoy,H.H., Kaya,Y (2019). Isolation of Blastomonas sp. from Horseshoe Island, Skua Lake, Antarctica, YTU.POLAR.001, MN384971, NCBI GenBank, 28-August-2019
- 87. Ozcimen,D., Kocer, A.T., Inan,B., Celik,A., Edbeib,M.F., Aksoy,H.M., Kaya,Y (2019). Isolation of Achromobacter sp. from Horseshoe Island, Skua Lake, Antarctica, YTU.KUTUP.001, MN396385, NCBI GenBank, 31-August-2019.
- 88. Humbert, S. et al., Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, 2010. 4(3): 450
- 89. Malard, L. A. and Pearce, D. A., Microbial diversity and biogeography in Arctic soils. Environmental Microbiology Reports, 2018. 10(6): 611-625.
- 90. Morita, R. Y., Psychrophilic bacteria. Bacteriological reviews, 1975. 39(2): 144.
- 91. Whyte, L. G., Bourbonnière, L. and Greer, C. W., Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Applied and Environmental Microbiology, 1997. 63(9): 3719-3723.
- 92. Robinson, C. H., Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 2001. 151(2): p.341-353.
- 93. Gon, O. and Heemstra, P. C., Fishes Of The Southern Ocean. JLB Smith Institute of Ichthyology Grahamstown, 1990. South Africa.
- 94. Gostinčar, C. et al., Extremotolerance in fungi: evolution on the edge. FEMS Microbiology Ecology, 2009. 71(1): p.2-11.
- 95. Medema, M. H. et al., antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 2011. 39(2): p.339-346.
- 96. Henríquez, M. et al., Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 2014. 30(1): p.65-76.
- 97. Bredholdt, H. et al., Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environmental Microbiology, 2007. 9(11): 2756-2764.
- 98. Liao, L. et al., Bioprospecting potential of halogenases from Arctic marine actinomycetes. BMC Microbiology, 2016. 16(1): p.34.
- 99. Akcay K, Kaya Y. (2020). Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds. Biotechnol Biotechnol Equip. 2019;33(1): 945–953
- 100. Wahhab, B. H. A., Anuar, N. F. S. K., Wahab, R. A., Al Nimer, M. S., Samsulrizal, N. H., Hamid, A. A. A., ... & Huyop, F. (2020). Identification and characterization of a 2, 2-dichloropropionic acid (2, 2-DCP) degrading alkalotorelant bacterium strain BHS1 isolated from Blue Lake, Turkey. Journal of Tropical Life Science, 10(3), 245-252
- 101. Edbeib MF, Wahab RA, Huyop FZ, Aksoy HM, & Kaya Y (2020) Further Analysis of Burkholderia pseudomallei MF2 and Identification of Putative Dehalogenase Gene by PCR. Indonesian Journal of Chemistry 2020, 20 (2), 386 – 394
102. Torstensson A, Jiménez C, Nilsson AK, Wulff A (2019) Elevated temperature and decreased salinity both affect the biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei, but not increased pCO2. Polar Biol 42:2149–2164. https://doi.org/10.1007/s00300-019-02589-y
- 103. Gray A, Krolikowski M, Fretwell P, et al (2020) Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat Commun 11:. https://doi.org/10.1038/s41467-020-16018-w
- 104. Hoham RW, Remias D (2020) Snow and Glacial Algae: A Review1. J Phycol 56:264–282. https://doi.org/10.1111/jpy.12952
- 105. Arrigo KR (2014) Sea Ice Ecosystems. Ann Rev Mar Sci 6:439–467. https://doi.org/10.1146/annurev-marine-010213-135103
- 106. Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174
- 107. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
- 108. Huilca, G., Licto, L., & Flores, R. (2020). Production of lipids from psychrophilic microalgae present in antarctic glaciers for the synthesis of biofuel. Revista Vínculos, 4(1).
- 109. Jha, D., Jain, V., Sharma, B., Kant, A., & Garlapati, V. K. (2017). Microalgae‐based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Reviews, 4(4), 257-272.
Antarctica: A review of Life Sciences and Biotechnology Researches
Yıl 2021,
Cilt: 4 Sayı: 1, 158 - 177, 15.04.2021
Suleyman Faruk Kırkıncı
Sevgi Maraklı
,
Hasan Murat Aksoy
,
Didem Özçimen
,
Yilmaz Kaya
Öz
Antarctica is the last discovered by humans on earth, the highest, the coldest, the driest and the lowest populated continent. At the same time, approximately 70% of the usable fresh water reserves of the earth are in this continent in ice form. With these features, it has continued to live with natural selection, even though there is no human life, from the past to the present. Antarctica is like a unique laboratory for scientists whose borders are the entire continent, with its natural habitats. In Antarctica, there are a small number of animal and plant species specific to the continent, as well as various algae, lichen and microorganism species. Today's scientists are searching for a solution to current problems such as global warming and environmental problems by doing research on these living forms. Researches have been carried out with some species, enzymes and genes isolated from the continent in different areas such as biological control, biotechnology etc. In this study, life sciences and biotechnology researches in Antarctica have been reviewed.
Kaynakça
- 1. WorldAtlas 2018. https://www.worldatlas.com/articles/what-are-the-origins-of-the-names-arctic-and-antarctica.html
- 2. Liddell, H. G., Scott, R., Crane, G., Stuart Jones, H. and McKenzie, R., A Greek-English Lexicon Antarctica. Oxford: Clarendon Press, 2002.
- 3. Encyclopædıa Brıtannıca 2019. https://www.britannica.com/place/Antarctica
- 4. World Geography 2019. https://www.enchantedlearning.com/geography/continents/Land.shtml
- 5. Scott K. N., Ice and Mineral Resources. In: Liggett D., Storey B., Cook Y., Meduna V. (eds)
Exploring the Last Continent. Springer Cham., 2015.
- 6. Burcu Özsoy (2020). Küresel Salgınlar Kutup Bölgelerinde Öğreneceklerimiz ve Geleceğimiz. Küresel Salgının Anatomisi: İnsan ve Toplumun Geleceği. Tuba Bilimler Akademesi. 978-605-2249-46-8
- 7. Encyclopedia 2020. https://www.encyclopedia.com/people/history/explorers-travelers-and-conquerors-biographies/james-cook
- 8. Ingrıd Hebel, Carolına Galleguıllos, Rıcardo Jaña and Marıa D.C. Dacasa-Rüdınger, Early knowledge of Antarctica’s vegetation: Expanding past and current evidence. Revista Chilena de Historia Natural, 2012. 85: p.409-418.
- 9. Harris, C. M. & Meadows, J., Environmental management in Antarctica Instruments and institutions. Marine Pollution Bulletin, 1992. 25(9-12): p.239–249.
- 10. Stewart, J., Antarctica an Encyclopedia, Second edition. McFarland & Company Inc., North Carolina, U.S.A., 2011.
- 11. Barrett, J. E., et al., Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology, 2004. 85: p.3105-3118.
- 12. Thomas, D. N. et al., The biology of polar regions. Oxford University Press, Oxford, UK, 2008.
- 13. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological monographs, 2014. 84, p.203-244
- 14. Convey, P. and Stevens, M. I., Antarctic biodiversity. Science, 2007. 317(5846): p.1877-1878.
- 15. Gilbert, J. A. et al., Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology, 2004. 150(1): p.171-180.
- 16. British Antarctic Survey 2020. https://www.bas.ac.uk/about/antarctica/wildlife/plants/
- 17. Amosova, A. V. Et al., Molecular Cytogenetic Analysis of Deschampsia antarctica Desv. (Poaceae), Maritime Antarctic. PloS one, 2015. 10(9).
- 18. Ruhland, C. T. et al., The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Deschampsia antarctica during Springtime ozone depletion in Antarctica. Photochemistry Photobiology, 2005. 81(5): p.1086-1093.
- 19. Pascual-Díaz, J.P., Serçe, S., Hradecká, I. et al. Genome size constancy in Antarctic populations of Colobanthus quitensis and Deschampsia antarctica. Polar Biol 43, 1407–1413 (2020). https://doi.org/10.1007/s00300-020-02699-y
- 20. Lee, J. et al., Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One, 2014. 9(3).
- 21. Romero, M., Casanova, A., Iturra, G., Reyes, A., Montenegro, G. and Alberdi, M. 1999. Leaf anatomy of Deschampsia antarctica (Poaceae) from the Maritime Antarctic and its plastic response to changes in the growth conditions. Revista Chilena de Historia Natural, 72, 411-425.
- 22. Barcikowski, A., Czaplewska, J., Giełwanowska, I., Loro, P., Smykla, J. and Zarzycki, K. 2001. Deschampsia antarctica (Poaceae)–the only native grass from Antarctica. Studies on grasses in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences, 367-377.
- 23. Byun, M. Y., Lee, J., Cui, L. H., Kang, Y., Oh, T. K., Park, H., Lee, H. and Kim, W. T. 2015. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants. Plant Science, 236, 61-74.
- 24. Amosova, A. V., Bolsheva, N. L., Samatadze, T. E., Twardovska, M. O., Zoshchuk, S. A., Andreev, I. O., Badaeva, E. D., Kunakh, V. A. and Muravenko, O. V. 2015. Molecular cytogenetic analysis of Deschampsia antarctica Desv.(Poaceae), maritime Antarctic. PloS One, 10:9, e0138878.
- 25. John, U. P., Polotnianka, R. M., Sivakumaran, K. A., Chew, O., MacKin, L., Kuiper, M. J., Talbot, J. P., Nugent, G. D., Mautord, J. and Schrauf, G. E. 2009. Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant, Cell & Environment, 32:4, 336-348.
- 26. Rabert, C., Gutiérrez-Moraga, A., Navarrete-Gallegos, A., Navarrete-Campos, D., Bravo, L. and Gidekel, M. 2014. Expression of a Deschampsia antarctica Desv. polypeptide with lipase activity in a Pichia pastoris vector. International Journal of Molecular Sciences, 15:2, 2359-2367
- 27. Kucuk, C., Bitki Probiyotik Bakteriler: Bitkiler Üzerindeki Rolleri ve Uygulamalar. International Journal of Life Sciences and Biotechnology, 2019. 2(1): p.1-15.
- 28. Kucuk, C. and A. Almaca, Bitki gelişimini teşvik eden rizobakteriler tarafından üretilen metabolitler ve bitki gelişimine etkileri. International Journal of Life Sciences and Biotechnology, 2020. 3(1): p.81- 94.
- 29. Podolich, O. et al., First record of the endophytic bacteria of Deschampsia antarctica E. Desv. from two distant localities of the maritime Antarctica. bioRxiv, 2019.
- 30. Kaya, Y., In vitro Plant Regeneration of Tobacco. Universiti Teknologi Malaysia: Malaysia in Faculty of Biosciences and Bioengineering, 2010.
- 31. Kaya, Y. and S. Karakütük, Farklı büyüme düzenleyicilerin Türk kır çeltiği rejenerasyonuna etkisi. Anadolu Tarım Bilimleri Dergisi, 2018. 33(3): p.226-231.
- 32. Hussain, A., Qarshi, I. A., Nazir, H. and Ullah, I., Plant tissue culture: current status and opportunities. Recent advances in plant in vitro culture, 2012. p.1-28.
- 33. Cuba, M. et al., Micropropagation of Deschampsia antarctica a frost-resistant Antarctic plant. Antarctic Science, 2005. 17(1): p.69-70.
- 34. Osorio, J. et al., The effects of growth regulators and a scanning electron microscope study of somatic embryogenesis in Antartic hair grass (Deschampsia antarctica Desv.). Polar Biology, 2014. 37: p.217-225.
- 35. Marely, C. D. et al., Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Scientific Reports, 2020. 10: p.1.
- 36. Cuba-Díaz, M., Cerda, G., Rivera, C., & Gómez, A. (2016). Genome size comparison in Colobanthus quitensis populations show differences in species ploidy. Polar Biology, 40(7), 1475–1480. doi:10.1007/s00300-016-2058-z
- 37. Marhold, K., et al., IAPT chromosome data 30/2. Taxon, 2019. 68(5): p.1124-1130.
- 38. Gielwanowska, I., Bochenek, A. and Szczuka, E., Development of the pollen in the Antarctic flowering plant Colobanthus quitensis [Kunth] Bartl. Acta Agrobotanica, 2007. 60:2.
- 39. Cuba-Díaz, M., Acuña, D., Cordero, C. M., and Klagges, M., Optimización de parámetros para la propagación in vitro de Colobanthus quitensis (Kunth) Bartl. Gayana Botánica, 2014. 71(1): p.58-67
- 40. Zúñiga, G. E. et al., Micropropagation of Antarctic Colobanthus quitensis. Antarctic Science, 2009. 21(2): p.149-150
- 41. Smıth, R. I. L., Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws, R. M., ed. Antarctic biology. Academic Press, 1984. p.61-162.
- 42. Moore, D. M., Studies in Colobanthus quitensis (Kunth) Bartl.and Deschampsia antarctica Desv. II. Taxonomy, distribution and relationships. British Antarctic Survey Bulletin, 1970. 23: p.63-80.
- 43. Convey, P., Reproduction of Antarctic flowering plants. Antarctic Science, 1996. 8: p.127-134.
- 44. Vera, M. L., Colonization and demographic structure of Deschampsia antarctica and Colobanthus quitensis along an altitudinal gradient on Livingston Island, South Shetland Islands, Antarctica. Polar Research, 2011. 30(1): p.7146.
- 45. Cannone, N. et al., S. Vascular plants changes in extreme environments: effect of multiple drivers. Climatic Change, 2016. 134(4): p.651-665.
- 46. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014. 80(2): p.203-244.
- 47. Hughes L., Biological consequences of global warming: Is the signal already, Trends in ecology & evolution, 2000. 15(2): p.56-61.
- 48. Bravo, L. A. et al., Cold resistance in antarctic angiosperms. Physiologia Plantarum, 2001. 111: p.55-65.
- 49. Oldham , P. D. and Kindness, J., Biodiversity Research and Innovation in Antarctica and the Southern Ocean. bioRxiv, 2020.
- 50. Torres-Díaz C, Gallardo-Cerda J, Lavin P, Oses R, Carrasco-Urra F, Atala C, et al. (2016) Biological Interactions and Simulated Climate Change Modulates the Ecophysiological Performance of Colobanthus quitensis in the Antarctic Ecosystem. PLoS ONE 11(10): e0164844. https://doi.org/10.1371/journal.pone.0164844.
- 51. Smith, R. L., Vascular plants as bioindicators of regional warming in antarctica. Oecologia, 1994. 99: p.322-328.
- 52. Pérez-Torres, E. et al., The role of photochemical quenching and antioxidants in photoprotection of Deschampsia antarctica. Functional Plant Biology, 2004. 31(7): p.731-741.
- 53. Rozema, J. et al. The role of uv-b radiation in aquatic and terrestrial ecosystems an experimental and functional analysis of the evolution of uv-absorbing compounds. Journal of Photochemistry and Photobiology B-biology, 2002. 66(2): p.12.
- 54. Salvucci, M. E. and Crafts-Brandner S. J., Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology, 2004. 134: 1460-1470.
- 55. Gidekel, M. et al., Identification and characterization of three novel cold acclimation-responsive genes from the extremophile hair grass Deschampsia antarctica desv. Extremophiles, 2003. 7: p.459-469
- 56. German, S., Peter, J. U. And Martina, P. R., Ice recrystallisation inhibition protein or antifreeze proteins from deschampsia, lolium and festuca species of grass. WO, 2005
- 57. Manuel, G., Ana, G., Leal, P., Luis, D. B., Jorge, D. and Emilio, G., Plant promoter. US 7273931 B2, 2007. https://lens.org/053-289- 529-443-956
- 58. Bravo, L. A. and Griffith, M., Characterization of antifreeze activity in antarctic plants. Journal of Experimental Botany, 2005. 56: p.1189-1196.
- 59. Manuel G, Lucas MCR, Gustavo CB, Carlos SL, Ana GM, Pablo PRJ, et al. Agent for cutaneous photoprotection against uva/uvb rays [Internet]. US 8357407 B2, 2013. Available: https://lens.org/004-963- 1699 859-833-206
- 60. Cuba-Díaz, M., Rivera-Mora, C., Navarrete, E. et al. Advances of native and non-native Antarctic species to in vitro conservation: improvement of disinfection protocols. Sci Rep 10, 3845 (2020). https://doi.org/10.1038/s41598-020-60533-1.
61. Nemergut, D. R. et al., Structure and function of alpine and arctic soil microbial communities. Research in microbiology, 2005. 156(7): p.775-784.
- 62. Sabbe, K., E. et al., Benthic diatom flora of freshwater and saline lakes in the Larsemann Hills and Rauer Islands, East Antarctica. Antarctic Science, 2003. 15(2): p.227-248.
- 63. Convey, P. and Stevens, M. I., Antarctic biodiversity. Science, 2007. 317(5846): p.1877-1878.
- 64. Jakosky, B. M., et al., Subfreezing activity of microorganisms and the potential habitability of Mars'polar regions. Astrobiology, 2003, 3:2: 343-350.
- 65. Vincent W.F., Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science, 2000. 12: p.374-385.
- 66. Friedmann E.I. (ed), Antarctic microbiology. John Wiley & Sons, 1993.
- 67. Gibson, J.A.E. et al., Biogeographic trends in Antarctic lake communities; In Trends in Antarctic Terrestrial and Limnetic Ecosystems. Bergstrom, D. M., Convey, P. and Huiskes, A.H.L. (eds.) Springer, (2006a). p.71-99.
- 68. Simmons, B. L., Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 2009. 41(10): 2052-2060
- 69. Aislabie, J. M., Jordan, S. and Barker, G. M., Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma, 2008. 144: p.9-20.
- 70. Tytgat, B., et al., Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiology Ecology, 2016. 92(9).
- 71. Papale, M. et al., Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica). Soil Biology & Biochemistry, 2018. 123: p.165-179.
- 72. Koo, H. et al., Metagenomic Analysis of Microbial Community Compositions and Cold-Responsive Stress Genes in Selected Antarctic Lacustrine and Soil Ecosystems. Life, 2018. 8(3): 29.
- 73. Shivaji, S., Bacterial biodiversity, cold adaptation and biotechnological importance of bacteria occurring in Antarctica. Proceedings of the Indian National Science Academy, 2017. 83: p.327-352.
- 74. Laybourn-Parry, J., Quayle, W. and Henshaw, T., The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biology, 2002. 25(7): p.542-552.
- 75. Convey, P. et al., The spatial structure of Antarctic biodiversity. Ecological Monographs, 2014. 84: p.203-244.
- 76. Yergeau, E. et al., Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiology Ecology, 2007. 59: p.436-451.
- 77. Dennis, P. G. et al., Soil fungal community composition does not alter along latitudinal gradient through the maritime and sub- Antarctic. Fungal Ecology, 2012. 5: p.403-408.
- 78. Niederberger, T. D. et al., Microbial community composition in soils of Northern Victoria Land, Antarctica. Environmental Microbiology, 2008. 10: p.1713-1724.
- 79. Cary, S. C. et al., On the rocks: microbial ecology of Antarctic cold desert soils. Nature Reviews Microbiology, 2010. 8: p.129-138.
- 80. Chong, C. W. et al., Patterns in the distribution of soil bacterial 16S rRNA gene sequences from different regions of Antarctica. Geoderma, 2012. 181: p.45-55.
- 81. Vyverman, W. et al., Evidence for widespread endemism among Antarctic micro-organisms. Polar Science, 2010. 4: 103-113.
- 82. Cary, S. C. et al., On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 2010. 8(2): 129.
- 83. Adams, B. J. et al., Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 2006. 38(10): 3003-3018.
- 84. Pearce, D. A. et al., Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 2009. 69(2): 143-157.
- 85. Süleyman Faruk Kırkıncı (2020). Antarktika kaynakli örneklerden dalapon herbisitini parçalayan bakterilerin izolasyonu, karakterizasyonu ve tanisi. Ondokuz Mayıs Universitesi Yuksek Lısans tezi
- 86. Ozcimen,D., Kocer, A.T., Inan,B., Celik,A., Edbeib,M.F., Aksoy,H.H., Kaya,Y (2019). Isolation of Blastomonas sp. from Horseshoe Island, Skua Lake, Antarctica, YTU.POLAR.001, MN384971, NCBI GenBank, 28-August-2019
- 87. Ozcimen,D., Kocer, A.T., Inan,B., Celik,A., Edbeib,M.F., Aksoy,H.M., Kaya,Y (2019). Isolation of Achromobacter sp. from Horseshoe Island, Skua Lake, Antarctica, YTU.KUTUP.001, MN396385, NCBI GenBank, 31-August-2019.
- 88. Humbert, S. et al., Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, 2010. 4(3): 450
- 89. Malard, L. A. and Pearce, D. A., Microbial diversity and biogeography in Arctic soils. Environmental Microbiology Reports, 2018. 10(6): 611-625.
- 90. Morita, R. Y., Psychrophilic bacteria. Bacteriological reviews, 1975. 39(2): 144.
- 91. Whyte, L. G., Bourbonnière, L. and Greer, C. W., Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Applied and Environmental Microbiology, 1997. 63(9): 3719-3723.
- 92. Robinson, C. H., Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 2001. 151(2): p.341-353.
- 93. Gon, O. and Heemstra, P. C., Fishes Of The Southern Ocean. JLB Smith Institute of Ichthyology Grahamstown, 1990. South Africa.
- 94. Gostinčar, C. et al., Extremotolerance in fungi: evolution on the edge. FEMS Microbiology Ecology, 2009. 71(1): p.2-11.
- 95. Medema, M. H. et al., antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research, 2011. 39(2): p.339-346.
- 96. Henríquez, M. et al., Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World Journal of Microbiology and Biotechnology, 2014. 30(1): p.65-76.
- 97. Bredholdt, H. et al., Rare actinomycete bacteria from the shallow water sediments of the Trondheim fjord, Norway: isolation, diversity and biological activity. Environmental Microbiology, 2007. 9(11): 2756-2764.
- 98. Liao, L. et al., Bioprospecting potential of halogenases from Arctic marine actinomycetes. BMC Microbiology, 2016. 16(1): p.34.
- 99. Akcay K, Kaya Y. (2020). Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds. Biotechnol Biotechnol Equip. 2019;33(1): 945–953
- 100. Wahhab, B. H. A., Anuar, N. F. S. K., Wahab, R. A., Al Nimer, M. S., Samsulrizal, N. H., Hamid, A. A. A., ... & Huyop, F. (2020). Identification and characterization of a 2, 2-dichloropropionic acid (2, 2-DCP) degrading alkalotorelant bacterium strain BHS1 isolated from Blue Lake, Turkey. Journal of Tropical Life Science, 10(3), 245-252
- 101. Edbeib MF, Wahab RA, Huyop FZ, Aksoy HM, & Kaya Y (2020) Further Analysis of Burkholderia pseudomallei MF2 and Identification of Putative Dehalogenase Gene by PCR. Indonesian Journal of Chemistry 2020, 20 (2), 386 – 394
102. Torstensson A, Jiménez C, Nilsson AK, Wulff A (2019) Elevated temperature and decreased salinity both affect the biochemical composition of the Antarctic sea-ice diatom Nitzschia lecointei, but not increased pCO2. Polar Biol 42:2149–2164. https://doi.org/10.1007/s00300-019-02589-y
- 103. Gray A, Krolikowski M, Fretwell P, et al (2020) Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat Commun 11:. https://doi.org/10.1038/s41467-020-16018-w
- 104. Hoham RW, Remias D (2020) Snow and Glacial Algae: A Review1. J Phycol 56:264–282. https://doi.org/10.1111/jpy.12952
- 105. Arrigo KR (2014) Sea Ice Ecosystems. Ann Rev Mar Sci 6:439–467. https://doi.org/10.1146/annurev-marine-010213-135103
- 106. Del Campo, J. A., García-González, M., & Guerrero, M. G. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Applied microbiology and biotechnology, 74(6), 1163-1174
- 107. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
- 108. Huilca, G., Licto, L., & Flores, R. (2020). Production of lipids from psychrophilic microalgae present in antarctic glaciers for the synthesis of biofuel. Revista Vínculos, 4(1).
- 109. Jha, D., Jain, V., Sharma, B., Kant, A., & Garlapati, V. K. (2017). Microalgae‐based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. ChemBioEng Reviews, 4(4), 257-272.