Investigation of antioxidant, enzyme inhibition and antiproliferative activities of blackthorn (Prunus spinosa L.) extracts
Yıl 2021,
Cilt: 4 Sayı: 3, 360 - 380, 15.12.2021
Merve Sönmez
,
Ferah Cömert Önder
,
Esra Tokay
,
Ayhan Celık
,
Feray Köçkar
,
Mehmet Ay
Öz
Natural products have a key role in drug discovery in pharmacology and medicine. Prunus spinosa L. (blackthorn) grown in Çanakkale province in western Turkey, is known as a medicinal plant, a rich source of biologically active compounds such as phenolics, flavonoids and anthocyanidins. The flower and fruit extracts of the plant are subjects of many studies, but they usually lack in details of its potential for bio-inhibition studies. Thus, this study aimed to investigate the antioxidant, enzyme inhibition and antiproliferative activity studies of the methanol, ethyl acetate, dichloromethane, and n-hexane extracts of the plant. The ethyl acetate and methanol extracts demonstrated more better antioxidant activity with DPPH, FRAP, CUPRAC, and TEAC assays. Enzyme inhibition studies of the extracts were performed using β-lactamase and various proteases. The methanol (FL) and ethyl acetate (FL and L) extracts at the concentration of 10 mg/mL, showed good inhibition against α-chymotrypsin, trypsin, and papain with values of 22.6%, 34.7% and 92.1%, respectively. Furthermore, the methanol and ethyl acetate extracts have displayed higher cytotoxic effect against cancer cells such as Hep3B and HT29 when compared to healthy cells (HUVEC) using MTT assay. The findings suggest that P. spinosa L. extracts and their components may be potential for further investigations of novel drug candidates.
Destekleyen Kurum
Çanakkale Onsekiz Mart University, The Scientific Research Coordination Unit
Proje Numarası
FYL 2014/222
Teşekkür
We thank Çanakkale Onsekiz Mart University for financial support. The authors also thank Ersin Karabacak for the identification of the plant.
Kaynakça
- Albertini, M., Fraternale, D., Semprucci, F., Cecchini, S., Colomba, M. & Rocchi, M.B.L. 1983. Bioeffects of Prunus spinosa L. fruit ethanol extract on reproduction and phenotypic plasticity of Trichoplax adhaerens Schulze. PeerJ, https://doi.org/10.7717/peerj.6789.
- Apak, R., Güçlü, K., Demirata, B., Ozyürek, M., Çelik, S.E., Bektaso̧glu, B., Berker, K.I. & Ozyurt, D. 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12: 1496−1547.
- Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. & Koirala, N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel), 8(4): 96.
- Barros, L., Carvalho, A.M., Morais, JSá. & Ferreira, I.C.F.R. 2010. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120: 247–254.
Benoit, C.Y.R. Plant extracts and compositions comprising extracellular protease inhibitors. WO/2002/069992.
- Benzie, I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’ the FRAP assay. Analytical Biochemistry, 239: 70−76.
- Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., Loizzo, M.R. 2019. Advances in the Tyrosinase Inhibitors from Plant Source. Current Medicinal Chemistry, 26(18): 3279-3299.
- Cömert Önder, F., Ay, M. & Sarker, S.D. 2013. Comparative study of antioxidant properties and total phenolic content of the extracts of Humulus lupulus L. and quantification of bioactive components by LC−MS/MS and GC−MS. Journal of Agricultural and Food Chemistry, 61: 10498−10506.
- Cömert Önder, F., Ay, M., Aydoğan Türkoğlu, S., Tura Köçkar, F. & Çelik, A. 2016. Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1): 90-98.
- Divya, C., Sreejina Sreedharan, K., Parambath, B.P. & Meethal. K.V. 2014. Identification of plant extracts expressing trypsin inhibitor. Acta Biologica Indica, 3(1): 522-526.
- Drawz, S.M., Papp-Wallace, K.M. & Bonomo, R.A. 2014. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrobial Agents Chemotherapy, 58(4): 1835-1846.
- Fais, A., Corda, M., Era, B., Fadda, M.B., Matos, M.J., Quezada, E., Santana, L., Picciau, C., Podda, G. & Delogu, G. 2009. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules. 14: 2514–20.
- Gangoué-Piéboji, J., Baurin, S., Frère, J-M., Ngassam, P., Ngameni, B., Azebaze, A., Pegnyemb, D.E., Watchueng, J., Goffin, C. & Galleni, M. 2007. Screening of some medicinal plants from cameroon for lactamase inhibitory activity. Phytotherapy Research, 21: 284–287.
- Ghorbanpour, M., Hadian, J., Nikabad, S. & Varma, A. 2017. Importance of medicinal and aromatic plants in human life. In: Ghorbanpour M., Varma A. (eds) Medicinal plants and environmental challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_1
- Guimarães, R., Barros, L., Calhelha, R.C., Carvalho, A.M., Queiroz M.J. & Ferreira, I.C. 2014. Bioactivity of different enriched phenolic extracts of wild fruits from Northeastern Portugal: A comparative study. Plant Foods for Human Nutrition, 69: 37–42.
- Hae, G.D., Jo, J.M., Kim, S.Y. & Kim, J.W. 2019. Tyrosinase inhibitors from natural source as skin-whitening agents and the application of edible insects: A Mini Review. International Journal of Clinical Nutrition, 5: 141.
- Hou, N., Liu, N., Han, J., Yan, Y. & Li, J. 2017. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs, 28(1): 59–65.
- Irizar, A.C. & Fernandez, M.F. 1992. Constituents of Prunus spinosa. Journal of Natural Products, 55(4): 450-454.
- Kim, Y.J. & Uyama, H. 2005. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. CMLS, Cellular and Molecular Life Sciences, 62: 1707–1723.
- Kim, Y., Kang, K. & Yokozawa, T. 2008. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chemical Toxicology, 46: 2466–2471.
- Kim, J.Y., Park, S.C., Hwang, I., Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S., & Park, Y. 2009. Protease inhibitors from plants with antimicrobial activity. Internatinal Journal of Molecular Science, 10(6): 2860-2872.
- Kim, M., Park, J., Song, K., Kim, H.G., Koh, J.S. & Boo, Y.C. 2012. Screening of plant extracts for human tyrosinase inhibiting effects. International Journal of Cosmetic Science, 34(2): 202-208.
- Korkmaz, N., Sener, S.O., Akkaya, S., Badem, M., Aliyazicioglu, R., Abudayyak, M., Oztas, E. & Ozgen, U. 2019. Investigation of antioxidant, cytotoxic, tyrosinase inhibitory activities, and phenolic profiles of green, white, and black teas. Turk Journal of Biochemistry, 44(3): 278–288.
- Kumarasamy, Y., Fergusson, M., Nahar, L. & Sarker, S.D. 2002. Biological activity of moschamindole from Centaurea moschata. Pharmaceutical Biology, 4: 307−310.
- Kumarasamy, Y., Cox, P.J., Jaspars, M., Nahar, L. & Sarker, S.D. 2004. Comparative studies on biological activities of Prunus padus and P. Spinosa. Fitoterapia. 75: 77–80.
- Liu, Y., Zhao, G., Li, X., Shen, Q., Wu, Q., Zhuang, J., Zhang, X., Xia, E., Zhang, Z., Qian, Y., Gao, L. & Xia, T. 2020. Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Research International, 135: 109276.
- Lo ́pez-Otín, C. & Bond, J.S. 2008. Proteases: Multifunctional Enzymes in Life and Disease. Journal of Biological Chemistry, 283(4): 30433–30437.
- Longo, V. 2020. Wild italian Prunus spinosa L. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods, 9(5): 2-15.
- Marchelak, A., Owczarek, A., Matczak, M., Pawlak, A., Kolodziejczyk-Czepas, J., Nowak, P. & Olszewska., M.A. 2017. Bioactivity potential of Prunus spinosa L. flower extracts: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. Frontiers in Pharmacology, 8: 1-14.
- Matos, M.J., Varela, C., Vilar, S., Hripcsak, G., Borges, F., Santana, L., Uriarte, E., Fais, A., Di Petrillo, A., Pintus, F. & Era, B. 2015. Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Advances, 5: 94227–35.
- Meschini, S., Pellegrini, E., Condello, M., Occhionero, G., Delfine, S., Condello, G. & Mastrodonato, F. 2017. Cytotoxic and apoptotic activities of prunus spinosa trigno ecotype extract on human cancer cells. Molecules. 22(9): 1578.
- Muddathir, A.M., Yamauchi, K., Batubara, I., Mohieldin, E.A.M. & Mitsunaga, T. 2017. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany, 109: 9–15.
- Murati, T., Miletić, M., Štefanko, A., Landeka Jurčević, I., Elez Garofulić, I., Dragović-Uzelac, V. & Kmetič, I. 2019. Comparative assessment of Prunus spinosa L. flower extract in non-neoplastic hepatocytes and hepatoblastoma cells. South African Journal of Botany, 123: 36–42.
- Qipa, E. & Dilek Gokalp, F. 2017. Apoptotic effect of Prunus spinosa fruit extract on HT-29 colon cancer cell line. Journal of Cancer Science and Therapy, 9: 50.
- Olszewska, M. & Wolbiś, M. 2001. Flavonoids from the flowers of Prunus spinosa L. Acta Poloniae Pharmaceutica, 58(5): 367-372.
- Ozer, O., Mutlu, B. & Kıvcak, B. 2007. Antityrosinase activity of some plant extracts and formulations containing ellagic acid. Pharmaceutical Biology, 45(6): 519–524.
- Parvez, S., Kang, M., Chung, H.S. & Bae, H. 2007. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research, 21: 805–16.
- Pinacho, R., Cavero, R.Y., Astiasarán, I., Ansorena, D. & Calvo, M.I. 2015. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19: 49-62.
- Popović, B.M., Blagojević, B., Pavlović, R.Ž., Mićić, N., Bijelić, S., Bogdanović, B., Mišan, A., Duarte, C.M.M. & Serra, A.T. 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chemistry, 302: 125373.
- Pozzo, L., Russo, R., Frassinetti, S., Vizzarri, F., Árvay, J., Vornoli, A., Casamassima, D., Palazzo, M., Croce, C.M.D. & Longo V. 2020. Wild italian prunus spinosa l. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods. 9(5): 2-15.
- Prior, R.L., Wu, X. & Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290-4302.
- Rahman, A., Choudhary, I.M. & Thomsen, J.W. 2001. Bioassay techniques for drug development. Holand: Harwood Academic Publishers, 124–30:136–8.
- Rakashanda, S., Qazi, A.K., Majeed, R., et al., 2013. Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pacific Journal of Cancer Prevention, 14(6): 3975-3978.
- Re, R., Pellegrini, N., Protrggente, A., Pannala, A., Yang, M. & Rice-Evan, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231−1237.
- Sadeghi Ekbatan, S., Li, X.Q., Ghorbani, M., Azadi, B. & Kubow, S. 2018. Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. International Journal of Molecular Science, 19(3): 723.
- Shahwar, D., Khan, M.K., Siddique, M., Sajjad, M., Khan, Z-U-D., Ajaib, M. & Ahmad, N. 2011. An efficient assay to screen β-lactamase inhibitors from plant extracts. Asian Journal of Chemistry, 23(7): 3183-3186.
- Shoeb, M., MacManus, S.M., Jaspars, M., Kong-Thoo-Lin, P., Nahar, L., Celik, S. & Sarker, S.D. 2007. Bioactivity of two Turkish endemic Centaurea species and their major constituents. Revista Brasileira de Farmacognosia, 17: 155−159.
- Sikora, E., Bieniek, M. & Borczak, B. 2013. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Scientiarum Polonorum Technologia Alimentaria, 12(4): 365-372.
- Srikanth, S. & Chen, Z. 2016. Plant protease inhibitors in therapeutics-focus on cancer therapy. Frontiers Pharmacology, 7: 470.
- Ştefănuţ, M.N., Căta,. A, Pop, R., Moşoarcă, C. & Zamfir, A.D. 2011. Anthocyanins HPLC-DAD and MS characterization, total phenolics, and antioxidant activity of some berries extracts, Analytical Letters, 44(18): 2843-2855.
- Tahirovic, A., Basic, N. & Copra-Janicijevic, A. 2018. Effect of solvents on phenolic compounds extraction and antioxidant activity of Prunus spinosa L. fruits. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, (50): 19-24.
- Veličković, J.M., Kostić, D.A., Stojanović, G.S., Mitić, S.S., Mitić, M.N., Ranđelović, S.S. & Đorđević, A.S. 2014. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska Industrija, 68(3): 297-303.
- Veličković, I., Žižak, Z., Rajčević, N., Ivanov, M., Soković, M., Marin, P. & Grujić, S. 2020. Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Archives of Biological Sciences, 72(1): 105-115.
- Velioglu, Y.S., Mazza, G., Gao, L. & Oomah, B.D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113−4117.
- Yuan, H., Ma, Q., Ye, Li. & Piao, G. 2016. The traditional medicine and modern medicine from natural products. Molecules, 21: 559.
- Zolghadri, S., Bahrami, A., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. & Saboury, A.A. 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1): 279-309.
Yaban Eriği (Prunus spinosa L.) Özütlerinin Antioksidan, Enzim İnhibisyonu ve Antiproliferatif Etkinliklerinin İncelenmesi
Yıl 2021,
Cilt: 4 Sayı: 3, 360 - 380, 15.12.2021
Merve Sönmez
,
Ferah Cömert Önder
,
Esra Tokay
,
Ayhan Celık
,
Feray Köçkar
,
Mehmet Ay
Öz
Doğal ürünler, farmakoloji ve tıpta ilaç keşfinde anahtar bir role sahiptir. Türkiye'nin batısındaki Çanakkale ilinde yetişen Prunus spinosa L. (karaçalı), tıbbi bir bitki olarak bilinir ve fenolikler, flavonoidler ve antosiyanidinler gibi biyolojik olarak aktif bileşiklerin zengin bir kaynağıdır. Bitkinin çiçek ve meyve özleri birçok çalışmanın konusudur, ancak genellikle biyoinhibisyon çalışmaları için potansiyelinin ayrıntılarından yoksundurlar. Bu nedenle, bu çalışmada bitkinin metanol, etil asetat, diklorometan ve n-hekzan özütlerinin antioksidan, enzim inhibisyonu ve antiproliferatif etkinlik çalışmalarının incelenmesi amaçlanmıştır. Etil asetat ve metanol özütleri, DPPH, FRAP, CUPRAC ve TEAC analizlerinde daha iyi antioksidan etkinlik sergiledi. Özütlerin enzim inhibisyon çalışmaları, β-laktamaz ve çeşitli proteazlar kullanılarak yapıldı. 10 mg/mL derişimdeki metanol (FL) ve etil asetat (FL ve L) özütleri, sırasıyla % 22.6, % 34.7 ve % 92.1 değerleriyle a-kimotripsin, tripsin ve papine karşı iyi inhibisyon gösterdi. Ayrıca metanol ve etil asetat özütleri, MTT testi kullanılarak sağlıklı hücrelere (HUVEC) kıyasla Hep3B ve HT29 gibi kanser hücrelerine karşı daha yüksek sitotoksik etki göstermiştir. Bulgular, P. spinosa L. özütleri ve bileşenlerinin yeni ilaç adaylarının ileri incelemeleri için potansiyel olabileceğini gösterdi.
Proje Numarası
FYL 2014/222
Kaynakça
- Albertini, M., Fraternale, D., Semprucci, F., Cecchini, S., Colomba, M. & Rocchi, M.B.L. 1983. Bioeffects of Prunus spinosa L. fruit ethanol extract on reproduction and phenotypic plasticity of Trichoplax adhaerens Schulze. PeerJ, https://doi.org/10.7717/peerj.6789.
- Apak, R., Güçlü, K., Demirata, B., Ozyürek, M., Çelik, S.E., Bektaso̧glu, B., Berker, K.I. & Ozyurt, D. 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12: 1496−1547.
- Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. & Koirala, N. 2019. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants (Basel), 8(4): 96.
- Barros, L., Carvalho, A.M., Morais, JSá. & Ferreira, I.C.F.R. 2010. Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties. Food Chemistry, 120: 247–254.
Benoit, C.Y.R. Plant extracts and compositions comprising extracellular protease inhibitors. WO/2002/069992.
- Benzie, I.F.F. & Strain, J.J. 1996. The ferric reducing ability of plasma (FRAP) as a measure of ‘‘antioxidant power’’ the FRAP assay. Analytical Biochemistry, 239: 70−76.
- Bonesi, M., Xiao, J., Tundis, R., Aiello, F., Sicari, V., Loizzo, M.R. 2019. Advances in the Tyrosinase Inhibitors from Plant Source. Current Medicinal Chemistry, 26(18): 3279-3299.
- Cömert Önder, F., Ay, M. & Sarker, S.D. 2013. Comparative study of antioxidant properties and total phenolic content of the extracts of Humulus lupulus L. and quantification of bioactive components by LC−MS/MS and GC−MS. Journal of Agricultural and Food Chemistry, 61: 10498−10506.
- Cömert Önder, F., Ay, M., Aydoğan Türkoğlu, S., Tura Köçkar, F. & Çelik, A. 2016. Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1): 90-98.
- Divya, C., Sreejina Sreedharan, K., Parambath, B.P. & Meethal. K.V. 2014. Identification of plant extracts expressing trypsin inhibitor. Acta Biologica Indica, 3(1): 522-526.
- Drawz, S.M., Papp-Wallace, K.M. & Bonomo, R.A. 2014. New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrobial Agents Chemotherapy, 58(4): 1835-1846.
- Fais, A., Corda, M., Era, B., Fadda, M.B., Matos, M.J., Quezada, E., Santana, L., Picciau, C., Podda, G. & Delogu, G. 2009. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules. 14: 2514–20.
- Gangoué-Piéboji, J., Baurin, S., Frère, J-M., Ngassam, P., Ngameni, B., Azebaze, A., Pegnyemb, D.E., Watchueng, J., Goffin, C. & Galleni, M. 2007. Screening of some medicinal plants from cameroon for lactamase inhibitory activity. Phytotherapy Research, 21: 284–287.
- Ghorbanpour, M., Hadian, J., Nikabad, S. & Varma, A. 2017. Importance of medicinal and aromatic plants in human life. In: Ghorbanpour M., Varma A. (eds) Medicinal plants and environmental challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_1
- Guimarães, R., Barros, L., Calhelha, R.C., Carvalho, A.M., Queiroz M.J. & Ferreira, I.C. 2014. Bioactivity of different enriched phenolic extracts of wild fruits from Northeastern Portugal: A comparative study. Plant Foods for Human Nutrition, 69: 37–42.
- Hae, G.D., Jo, J.M., Kim, S.Y. & Kim, J.W. 2019. Tyrosinase inhibitors from natural source as skin-whitening agents and the application of edible insects: A Mini Review. International Journal of Clinical Nutrition, 5: 141.
- Hou, N., Liu, N., Han, J., Yan, Y. & Li, J. 2017. Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs, 28(1): 59–65.
- Irizar, A.C. & Fernandez, M.F. 1992. Constituents of Prunus spinosa. Journal of Natural Products, 55(4): 450-454.
- Kim, Y.J. & Uyama, H. 2005. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. CMLS, Cellular and Molecular Life Sciences, 62: 1707–1723.
- Kim, Y., Kang, K. & Yokozawa, T. 2008. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chemical Toxicology, 46: 2466–2471.
- Kim, J.Y., Park, S.C., Hwang, I., Kim, J. Y., Park, S. C., Hwang, I., Cheong, H., Nah, J. W., Hahm, K. S., & Park, Y. 2009. Protease inhibitors from plants with antimicrobial activity. Internatinal Journal of Molecular Science, 10(6): 2860-2872.
- Kim, M., Park, J., Song, K., Kim, H.G., Koh, J.S. & Boo, Y.C. 2012. Screening of plant extracts for human tyrosinase inhibiting effects. International Journal of Cosmetic Science, 34(2): 202-208.
- Korkmaz, N., Sener, S.O., Akkaya, S., Badem, M., Aliyazicioglu, R., Abudayyak, M., Oztas, E. & Ozgen, U. 2019. Investigation of antioxidant, cytotoxic, tyrosinase inhibitory activities, and phenolic profiles of green, white, and black teas. Turk Journal of Biochemistry, 44(3): 278–288.
- Kumarasamy, Y., Fergusson, M., Nahar, L. & Sarker, S.D. 2002. Biological activity of moschamindole from Centaurea moschata. Pharmaceutical Biology, 4: 307−310.
- Kumarasamy, Y., Cox, P.J., Jaspars, M., Nahar, L. & Sarker, S.D. 2004. Comparative studies on biological activities of Prunus padus and P. Spinosa. Fitoterapia. 75: 77–80.
- Liu, Y., Zhao, G., Li, X., Shen, Q., Wu, Q., Zhuang, J., Zhang, X., Xia, E., Zhang, Z., Qian, Y., Gao, L. & Xia, T. 2020. Comparative analysis of phenolic compound metabolism among tea plants in the section Thea of the genus Camellia. Food Research International, 135: 109276.
- Lo ́pez-Otín, C. & Bond, J.S. 2008. Proteases: Multifunctional Enzymes in Life and Disease. Journal of Biological Chemistry, 283(4): 30433–30437.
- Longo, V. 2020. Wild italian Prunus spinosa L. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods, 9(5): 2-15.
- Marchelak, A., Owczarek, A., Matczak, M., Pawlak, A., Kolodziejczyk-Czepas, J., Nowak, P. & Olszewska., M.A. 2017. Bioactivity potential of Prunus spinosa L. flower extracts: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. Frontiers in Pharmacology, 8: 1-14.
- Matos, M.J., Varela, C., Vilar, S., Hripcsak, G., Borges, F., Santana, L., Uriarte, E., Fais, A., Di Petrillo, A., Pintus, F. & Era, B. 2015. Design and discovery of tyrosinase inhibitors based on a coumarin scaffold. RSC Advances, 5: 94227–35.
- Meschini, S., Pellegrini, E., Condello, M., Occhionero, G., Delfine, S., Condello, G. & Mastrodonato, F. 2017. Cytotoxic and apoptotic activities of prunus spinosa trigno ecotype extract on human cancer cells. Molecules. 22(9): 1578.
- Muddathir, A.M., Yamauchi, K., Batubara, I., Mohieldin, E.A.M. & Mitsunaga, T. 2017. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. South African Journal of Botany, 109: 9–15.
- Murati, T., Miletić, M., Štefanko, A., Landeka Jurčević, I., Elez Garofulić, I., Dragović-Uzelac, V. & Kmetič, I. 2019. Comparative assessment of Prunus spinosa L. flower extract in non-neoplastic hepatocytes and hepatoblastoma cells. South African Journal of Botany, 123: 36–42.
- Qipa, E. & Dilek Gokalp, F. 2017. Apoptotic effect of Prunus spinosa fruit extract on HT-29 colon cancer cell line. Journal of Cancer Science and Therapy, 9: 50.
- Olszewska, M. & Wolbiś, M. 2001. Flavonoids from the flowers of Prunus spinosa L. Acta Poloniae Pharmaceutica, 58(5): 367-372.
- Ozer, O., Mutlu, B. & Kıvcak, B. 2007. Antityrosinase activity of some plant extracts and formulations containing ellagic acid. Pharmaceutical Biology, 45(6): 519–524.
- Parvez, S., Kang, M., Chung, H.S. & Bae, H. 2007. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytotherapy Research, 21: 805–16.
- Pinacho, R., Cavero, R.Y., Astiasarán, I., Ansorena, D. & Calvo, M.I. 2015. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. Journal of Functional Foods, 19: 49-62.
- Popović, B.M., Blagojević, B., Pavlović, R.Ž., Mićić, N., Bijelić, S., Bogdanović, B., Mišan, A., Duarte, C.M.M. & Serra, A.T. 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north Serbia-from raw data to PCA analysis. Food Chemistry, 302: 125373.
- Pozzo, L., Russo, R., Frassinetti, S., Vizzarri, F., Árvay, J., Vornoli, A., Casamassima, D., Palazzo, M., Croce, C.M.D. & Longo V. 2020. Wild italian prunus spinosa l. fruit exerts in vitro antimicrobial activity and protects against in vitro and in vivo oxidative stress. Foods. 9(5): 2-15.
- Prior, R.L., Wu, X. & Schaich, K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10): 4290-4302.
- Rahman, A., Choudhary, I.M. & Thomsen, J.W. 2001. Bioassay techniques for drug development. Holand: Harwood Academic Publishers, 124–30:136–8.
- Rakashanda, S., Qazi, A.K., Majeed, R., et al., 2013. Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pacific Journal of Cancer Prevention, 14(6): 3975-3978.
- Re, R., Pellegrini, N., Protrggente, A., Pannala, A., Yang, M. & Rice-Evan, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26: 1231−1237.
- Sadeghi Ekbatan, S., Li, X.Q., Ghorbani, M., Azadi, B. & Kubow, S. 2018. Chlorogenic acid and its microbial metabolites exert anti-proliferative effects, S-phase cell-cycle arrest and apoptosis in human colon cancer Caco-2 cells. International Journal of Molecular Science, 19(3): 723.
- Shahwar, D., Khan, M.K., Siddique, M., Sajjad, M., Khan, Z-U-D., Ajaib, M. & Ahmad, N. 2011. An efficient assay to screen β-lactamase inhibitors from plant extracts. Asian Journal of Chemistry, 23(7): 3183-3186.
- Shoeb, M., MacManus, S.M., Jaspars, M., Kong-Thoo-Lin, P., Nahar, L., Celik, S. & Sarker, S.D. 2007. Bioactivity of two Turkish endemic Centaurea species and their major constituents. Revista Brasileira de Farmacognosia, 17: 155−159.
- Sikora, E., Bieniek, M. & Borczak, B. 2013. Composition and antioxidant properties of fresh and frozen stored blackthorn fruits (Prunus spinosa L.). Acta Scientiarum Polonorum Technologia Alimentaria, 12(4): 365-372.
- Srikanth, S. & Chen, Z. 2016. Plant protease inhibitors in therapeutics-focus on cancer therapy. Frontiers Pharmacology, 7: 470.
- Ştefănuţ, M.N., Căta,. A, Pop, R., Moşoarcă, C. & Zamfir, A.D. 2011. Anthocyanins HPLC-DAD and MS characterization, total phenolics, and antioxidant activity of some berries extracts, Analytical Letters, 44(18): 2843-2855.
- Tahirovic, A., Basic, N. & Copra-Janicijevic, A. 2018. Effect of solvents on phenolic compounds extraction and antioxidant activity of Prunus spinosa L. fruits. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, (50): 19-24.
- Veličković, J.M., Kostić, D.A., Stojanović, G.S., Mitić, S.S., Mitić, M.N., Ranđelović, S.S. & Đorđević, A.S. 2014. Phenolic composition, antioxidant and antimicrobial activity of the extracts from Prunus spinosa L. fruit. Hemijska Industrija, 68(3): 297-303.
- Veličković, I., Žižak, Z., Rajčević, N., Ivanov, M., Soković, M., Marin, P. & Grujić, S. 2020. Examination of the polyphenol content and bioactivities of Prunus spinosa L. fruit extracts. Archives of Biological Sciences, 72(1): 105-115.
- Velioglu, Y.S., Mazza, G., Gao, L. & Oomah, B.D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113−4117.
- Yuan, H., Ma, Q., Ye, Li. & Piao, G. 2016. The traditional medicine and modern medicine from natural products. Molecules, 21: 559.
- Zolghadri, S., Bahrami, A., Khan, M.T.H., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F. & Saboury, A.A. 2019. A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1): 279-309.