Review
BibTex RIS Cite

Carbohydrate Based Therapeutics

Year 2021, Volume: 4 Issue: 3, 581 - 607, 15.12.2021
https://doi.org/10.38001/ijlsb.875364

Abstract

In life sciences, the importance of carbohydrates is increasing. Carbohydrates have very different biological roles. One of these roles is their activities in therapy. Carbohydrate-based therapeutics are used in the treatment of cardiovascular and hematological diseases ranging from inflammatory diseases and anti-thrombotic therapies to wound healing. Heparin is the most widely known carbohydrate-based drug. Carbohydrate-based therapeutics include polysaccharide and oligosaccharide-containing anti-inflammatory, anticoagulant and antithrombotic agents, natural and synthetic sources. Some of these compounds have biological effects with arthritic and anti-HIV activities. In recent years, both natural and synthetic monosaccharides have been investigated for in vivo anti-cardioprotective and inflammatory properties.

References

  • 1. Axford, J., Glycobiology and medicine: an introduction. Journal of the Royal Society of Medicine, 1997. 90(5): p. 260-264.
  • 2. Schnaar, R.L. and H.H. Freeze, A "Glyconutrient Sham" and the Jenner Glycobiology and Medicine Symposium. Glycobiology, 2017. 27(5): p. 383-384.
  • 3. Hakomori, S., New directions in cancer therapy based on aberrant expression of glycosphingolipids: anti-adhesion and ortho-signaling therapy. Cancer Cells, 1991. 3(12): p. 461-70.
  • 4. Kuberan, B. and R.J. Lindhardt, Carbohydrate based vaccines. Current Organic Chemistry, 2000. 4(6): p. 653-677.
  • 5. Jirmo, A.C., et al., Differential expression patterns of glycosphingolipids and C-type lectin receptors on immune cells in absence of functional regulatory T cells. Immunity Inflammation and Disease, 2020. 8(4): p. 512-522.
  • 6. Liang, Y.J., et al., Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(13): p. 4968-4973.
  • 7. Cai, Z.X., et al., Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomaterials Science, 2019. 7(8): p. 3143-3157.
  • 8. Ballut, S., et al., New strategy for targeting of photosensitizers. Synthesis of glycodendrimeric phenylporphyrins, incorporation into a liposome membrane and interaction with a specific lectin. Chemical Communications, 2009(2): p. 224-226.
  • 9. Kimura, S., et al., A novel glycan targeting cancer therapy using lectin modified liposome. Cancer Research, 2019. 79(13).
  • 10. Joziasse, D.H. and R. Oriol, Xenotransplantation: the importance of the Galalpha1,3Gal epitope in hyperacute vascular rejection. Biochim Biophys Acta, 1999. 1455(2-3): p. 403-18.
  • 11. Kosik, I., et al., Correction: Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog, 2018. 14(6): p. e1007141.
  • 12. Liu, C.C., X.J. Zheng, and X.S. Ye, Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Chemmedchem, 2016. 11(4): p. 357-362.
  • 13. Behrens, A.J., et al., Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. J Proteome Res, 2018. 17(3): p. 987-999.
  • 14. Ingale, J., et al., Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies. J Virol, 2014. 88(24): p. 14002-16.
  • 15. Hyakumura, M., et al., Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity. J Virol, 2015. 89(22): p. 11312-22.
  • 16. McCoy, L.E. and D.R. Burton, Identification and specificity of broadly neutralizing antibodies against HIV. Immunol Rev, 2017. 275(1): p. 11-20.
  • 17. Astronomo, R.D., et al., A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. Journal of Virology, 2008. 82(13): p. 6359-6368.
  • 18. Wang, Z.Y., et al., Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virologica Sinica, 2016. 31(2): p. 110-117.
  • 19. Excler, J.L., M.L. Robb, and J.H. Kim, Prospects for a Globally Effective HIV-1 Vaccine. Am J Prev Med, 2015. 49(6 Suppl 4): p. S307-18.
  • 20. Rubens, M., et al., HIV Vaccine: Recent Advances, Current Roadblocks, and Future Directions. J Immunol Res, 2015. 2015: p. 560347.
  • 21. Mettu, R., C.Y. Chen, and C.Y. Wu, Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci, 2020. 27(1): p. 9.
  • 22. Brown, G.D., et al., Dectin-1 mediates the biological effects of beta-glucans. J Exp Med, 2003. 197(9): p. 1119-24.
  • 23. Pollard, A.J., K.P. Perrett, and P.C. Beverley, Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol, 2009. 9(3): p. 213-20.
  • 24. Kumpulainen, E.J., R.J. Keskikuru, and R.T. Johansson, Serum tumor marker CA 15.3 and stage are the two most powerful predictors of survival in primary breast cancer. Breast Cancer Res Treat, 2002. 76(2): p. 95-102.
  • 25. Locker, G.Y., et al., ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol, 2006. 24(33): p. 5313-27.
  • 26. Sato, Y., et al., Early Recognition of Hepatocellular-Carcinoma Based on Altered Profiles of Alpha-Fetoprotein. New England Journal of Medicine, 1993. 328(25): p. 1802-1806.
  • 27. Adamczyk, B., T. Tharmalingam, and P.M. Rudd, Glycans as cancer biomarkers. Biochim Biophys Acta, 2012. 1820(9): p. 1347-53.
  • 28. Campos, D., et al., Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics, 2015. 14(6): p. 1616-29.
  • 29. Saldova, R., et al., Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology, 2011. 21(2): p. 195-205.

Karbohidrat Bazlı Terapotikler

Year 2021, Volume: 4 Issue: 3, 581 - 607, 15.12.2021
https://doi.org/10.38001/ijlsb.875364

Abstract

Yaşam bilimlerinde, karbohidratların önemi giderek artmaktadır. Karbohidratlar çok farklı biyolojik rollere sahiptir. Bu rollerinden bir taneside onların tedavideki etkinlikleridir. Karbohidrat bazlı terapötikler, enflamatuar hastalıklar ve anti-trombotik tedavilerden yara iyileşmesine kadar değişen kardiyovasküler ve hematolojik hastalıkların tedavisinde kullanılmaktadır. Heparin, en yaygın bilinen karbohidrat bazlı ilaçtır. Karbohidrat bazlı terapötikler, polisakkarit ve oligosakarit içerikli anti-enflamatuar, antikoagülan ve antitrombotik ajanları, doğal ve sentetik kaynakları içermektedir. Bu bileşiklerin bazıları, artritik ve anti-HIV aktiviteler gösteren biyolojik etkilere sahiptir. Son yıllarda hem doğal hem de sentetik monosakkaritler, in vivo anti- kardiyoprotektif ve enflamatuar özellikleri açısından araştırılmaya başlanılmıştır.

References

  • 1. Axford, J., Glycobiology and medicine: an introduction. Journal of the Royal Society of Medicine, 1997. 90(5): p. 260-264.
  • 2. Schnaar, R.L. and H.H. Freeze, A "Glyconutrient Sham" and the Jenner Glycobiology and Medicine Symposium. Glycobiology, 2017. 27(5): p. 383-384.
  • 3. Hakomori, S., New directions in cancer therapy based on aberrant expression of glycosphingolipids: anti-adhesion and ortho-signaling therapy. Cancer Cells, 1991. 3(12): p. 461-70.
  • 4. Kuberan, B. and R.J. Lindhardt, Carbohydrate based vaccines. Current Organic Chemistry, 2000. 4(6): p. 653-677.
  • 5. Jirmo, A.C., et al., Differential expression patterns of glycosphingolipids and C-type lectin receptors on immune cells in absence of functional regulatory T cells. Immunity Inflammation and Disease, 2020. 8(4): p. 512-522.
  • 6. Liang, Y.J., et al., Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(13): p. 4968-4973.
  • 7. Cai, Z.X., et al., Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomaterials Science, 2019. 7(8): p. 3143-3157.
  • 8. Ballut, S., et al., New strategy for targeting of photosensitizers. Synthesis of glycodendrimeric phenylporphyrins, incorporation into a liposome membrane and interaction with a specific lectin. Chemical Communications, 2009(2): p. 224-226.
  • 9. Kimura, S., et al., A novel glycan targeting cancer therapy using lectin modified liposome. Cancer Research, 2019. 79(13).
  • 10. Joziasse, D.H. and R. Oriol, Xenotransplantation: the importance of the Galalpha1,3Gal epitope in hyperacute vascular rejection. Biochim Biophys Acta, 1999. 1455(2-3): p. 403-18.
  • 11. Kosik, I., et al., Correction: Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pathog, 2018. 14(6): p. e1007141.
  • 12. Liu, C.C., X.J. Zheng, and X.S. Ye, Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Chemmedchem, 2016. 11(4): p. 357-362.
  • 13. Behrens, A.J., et al., Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. J Proteome Res, 2018. 17(3): p. 987-999.
  • 14. Ingale, J., et al., Hyperglycosylated stable core immunogens designed to present the CD4 binding site are preferentially recognized by broadly neutralizing antibodies. J Virol, 2014. 88(24): p. 14002-16.
  • 15. Hyakumura, M., et al., Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity. J Virol, 2015. 89(22): p. 11312-22.
  • 16. McCoy, L.E. and D.R. Burton, Identification and specificity of broadly neutralizing antibodies against HIV. Immunol Rev, 2017. 275(1): p. 11-20.
  • 17. Astronomo, R.D., et al., A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. Journal of Virology, 2008. 82(13): p. 6359-6368.
  • 18. Wang, Z.Y., et al., Recent advances in synthetic carbohydrate-based human immunodeficiency virus vaccines. Virologica Sinica, 2016. 31(2): p. 110-117.
  • 19. Excler, J.L., M.L. Robb, and J.H. Kim, Prospects for a Globally Effective HIV-1 Vaccine. Am J Prev Med, 2015. 49(6 Suppl 4): p. S307-18.
  • 20. Rubens, M., et al., HIV Vaccine: Recent Advances, Current Roadblocks, and Future Directions. J Immunol Res, 2015. 2015: p. 560347.
  • 21. Mettu, R., C.Y. Chen, and C.Y. Wu, Synthetic carbohydrate-based vaccines: challenges and opportunities. J Biomed Sci, 2020. 27(1): p. 9.
  • 22. Brown, G.D., et al., Dectin-1 mediates the biological effects of beta-glucans. J Exp Med, 2003. 197(9): p. 1119-24.
  • 23. Pollard, A.J., K.P. Perrett, and P.C. Beverley, Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol, 2009. 9(3): p. 213-20.
  • 24. Kumpulainen, E.J., R.J. Keskikuru, and R.T. Johansson, Serum tumor marker CA 15.3 and stage are the two most powerful predictors of survival in primary breast cancer. Breast Cancer Res Treat, 2002. 76(2): p. 95-102.
  • 25. Locker, G.Y., et al., ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol, 2006. 24(33): p. 5313-27.
  • 26. Sato, Y., et al., Early Recognition of Hepatocellular-Carcinoma Based on Altered Profiles of Alpha-Fetoprotein. New England Journal of Medicine, 1993. 328(25): p. 1802-1806.
  • 27. Adamczyk, B., T. Tharmalingam, and P.M. Rudd, Glycans as cancer biomarkers. Biochim Biophys Acta, 2012. 1820(9): p. 1347-53.
  • 28. Campos, D., et al., Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery. Mol Cell Proteomics, 2015. 14(6): p. 1616-29.
  • 29. Saldova, R., et al., Core fucosylation and alpha2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology, 2011. 21(2): p. 195-205.
There are 29 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Industrial Biotechnology
Journal Section Review Articles
Authors

Nebiye Pelin Türker 0000-0001-6060-3557

Elvan Bakar 0000-0001-5703-3469

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 4 Issue: 3

Cite

EndNote Türker NP, Bakar E (December 1, 2021) Carbohydrate Based Therapeutics. International Journal of Life Sciences and Biotechnology 4 3 581–607.



Follow us on social networks  19277 19276 20153  22366