Research Article
BibTex RIS Cite

Antarktika Bilim Üslerinde Polar Mikroalgler Kullanılarak Atık Su Arıtımı

Year 2024, Volume: 7 Issue: 3, 142 - 148
https://doi.org/10.38001/ijlsb.1537674

Abstract

Son yıllarda Antarktika ve Arktik bölgelerindeki bilimsel çalışmaların sayısı önemli ölçüde artmıştır. Bilimsel çalışmalar bölgenin el değmemiş doğasını keşfetmemize ve küresel iklimi daha iyi anlamamıza olanak tanırken, atık su, hava kirliliği ve habitat tahribatı gibi çeşitli ekolojik endişeleri de gündeme getirmektedir. Bu, kutup bölgelerinin flora ve faunasını tehdit ederek biyolojik çeşitliliği olumsuz etkilemektedir. Kirliliği önlemek, habitatları korumak ve istilacı türlerin girişini önlemek için sürdürülebilir araştırma uygulamaları ve uluslararası iş birliği yoluyla kutup bölgelerinin kırılgan ekosistemlerini korumamız hayati önem taşımaktadır. Antarktika Antlaşması ve diğer protokoller, atık suyun arıtılmadan denize deşarj edilmesini yasaklamaktadır. Bu nedenle, Antarktika'daki birçok araştırma üssü atık suyu arıtmak için tesisler kurmuştur. Bu tesisler, atık suyun çevreye zarar vermeden arıtılmasını ve denize geri gönderilmesini sağlar. Ancak, atık su arıtma süreci önemli miktarda katı atık üretir. Bu atıklar arıtma tesislerinde biriktikçe anakaraya geri taşınması gerekir. Antarktika'nın uzaklığı ve zorlu coğrafi koşulları, katı atık taşımacılığını lojistik olarak zor ve maliyetli hale getirmektedir. Bu sorunları çözmek için, Antarktika'da meydana gelen alg patlamalarının atık suda yetiştirilerek arıtma sürecinde kullanılması amaçlanmıştır. Çalışmada, Antarktika mikroalgleri yapay atık suda yetiştirilmiş ve Antarktika mikroalglerinin Antarktika üslerindeki evsel atık suyun arıtımı için önerilebileceği ve yaklaşık %30 protein içeriğine sahip olması nedeniyle önerilen aktiviteler için yüksek bir potansiyele sahip olduğu bulunmuştur.

References

  • 1. Evecen, C., Let's Get to Know Antarctica. Tübitak Marmara Research Center, 2020.
  • 2. Broady, P. A., Life on land: Non-aquatic ecosystems. In Exploring the Last Continent: An Introduction to Antarctica, Springer International Publishing, 2016, p. 201-228.
  • 3. Salihoğlu, B., and B. Öztürk, 2021. Climate Change and Its Effects on the Seas of Turkey (B. Salihoğlu & B. Öztürk, Eds.). Turkish Marine Research Foundation.
  • 4. French, D., Sustainable development and the 1991 Madrid Protocol to the 1959 Antarctic Treaty: The primacy of protection in a particularly sensitive environment. Journal of International Wildlife Law and Policy, 1999, 2(3), p. 291-317.
  • 5. Tin, T., et al., Impacts of local human activities on the Antarctic environment. Antarctic Science, 2009. 21(1), p. 3-33.
  • 6. Potter, S. 2003. Approaches to Antarctic solid waste management logistics: past, present, potential (Doctoral dissertation, University of Tasmania).
  • 7. Stark, J. S., et al., Physical, chemical, biological and ecotoxicological properties of wastewater discharged from Davis Station, Antarctica. Cold Regions Science and Technology, 2015, 113, p. 52-62.
  • 8. Üstün, G. E., and A. Tırpancı, Greywater Treatment and Reuse. Uludağ University Journal of The Faculty of Engineering, 2015, 20(2), 119.
  • 9. Oktor, K., and D. Celik, Treatment of wash basin and bathroom greywater with Chlorella variabilis and reusability. Journal of Water Process Engineering, 2019, 31, 100857.
  • 10. Koçer, A. T., et al., Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Brazilian Journal of Microbiology, 2021, 52(4), p. 1779-1790.
  • 11. Sert, B., B. İnan, and D. Özçimen, Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chimica Slovenica, 2018, 65(1).
  • 12. Vehapi, M., A. Yilmaz, and D. Özçimen, Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold Basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol. Lett, 2018, 1, p. 1-8.
  • 13. Özçimen, D., Ö. M. Gülyurt, and B. İnan, Optimization of biodiesel production from Chlorella protothecoides oil via ultrasound assisted transesterification. Chemical Industry and Chemical Engineering Quarterly, 2017, 23(3), p. 367-375.
  • 14. İnan, B., and D. Özçimen, Preparation and characterization of microalgal oil loaded alginate/poly (vinyl alcohol) electrosprayed nanoparticles. Food and Bioproducts Processing, 2021, 129, p.105-114.
  • 15. Alazaiza, M. Y. D., et al., Sewage water treatment using Chlorella vulgaris microalgae for simultaneous nutrient separation and biomass production. Separations, 2023, 10(4).
  • 16. Wollmann, F., et al., Microalgae wastewater treatment: Biological and technological approaches. In Engineering in Life Sciences, Wiley-VCH Verlag, 2019, 19, 12, p. 860-871.
  • 17. Slompo, N. D. M., et al., Nutrient and pathogen removal from anaerobically treated black water by microalgae. Journal of Environmental Management, 2020, 268, 110693.
  • 18. Silva, D. F. S., et al., Separation of microalgae cultivated in anaerobically digested black water using Moringa Oleifera Lam seeds as coagulant. Journal of Water Process Engineering, 2021, 39, 101738.
  • 19. Kırkıncı, S. F., et al., Antarktika: Yaşam Bilimleri ve Biyoteknoloji Araştırmalarının Gözden Geçirilmesi. International Journal of Life Sciences and Biotechnology, 2021, 4(1), p.158-177.
  • 20. Shrestha, B., et al., Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development. BioTech, 2023, 12(1), 8.
  • 21. İnan, B., et al., Interactive effects of cold and temperate conditions on growth and biochemical content of Antarctic microalga Chlorella variabilis YTU. ANTARCTIC. 001. Journal of Applied Phycology, 2023, 35(2), p. 625-637.
  • 22. Tarasenko, S., 2008. Wastewater Treatment in Antarctica. GCAS.
  • 23. Dubois, M., K.A., Gilles, J. K., Hamilton, Colorimetric method for determination of sugars and related substances. Analytical chemistry,1956, 28: p. 350–356.
  • 24. Bligh E. G., and W. J., Dyer, A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 1959, 37: p. 911–917.
  • 25. Lowry, O. H., et al., Protein measurement with the folin. Journal Biological Chemistry, 1951, 193
  • 26. Liu, Xiaoning et. al., Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide, Chemosphere, 2017, 186, p. 977-985.
  • 27. Reyimu, Z., and D., Özçimen, Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. Journal of Cleaner Production, 2017, 150: p. 40–46.
  • 28. Gani, P., et al., Influence of initial cell concentrations on the growth rate and biomass productivity of microalgae in domestic wastewater. Applied Ecology and Environmental Research, 2016, 14(2): p. 399-409.
  • 29. Rani, S., and C.S.P., Ojha, Chlorella sorokiniana for Integrated Wastewater Treatment, Biomass Accumulation and Value-Added Product Estimation under Varying Photoperiod Regimes: A Comparative Study. Journal of Water Process Engineering, 2020, 39, 10188
  • 30. Oliveira, C. Y. B., et. al., Growth of Chlorella vulgaris using wastewater from Nile tilapia (Oreochromis niloticus) farming in a low-salinity biofloc system. Acta Scientiarum. Technology, 2019, 42, e46232.
  • 31. Babaei, A. et. al., Evaluation of Nutrient Removal and Biomass Production Through Mixotrophic,Heterotrophic, and Photoautotrophic Cultivation of Chlorella in Nitrate and Ammonium Wastewater. International Journal of Environmental Research, 2018, 12(2), p.167–178.
  • 32. Zhu, L. et. al., Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 2018, 137, p. 318–325.
  • 33. Miao, M. et. al., Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. International Biodeterioration & Biodegradation, 2016, 113, p. 120–125.
  • 34. Chen, C.-Y. et. al., Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 2020, 122814.
  • 35. Bertoldi, F. C., E. Sant’Anna, and J. L. Barcelos-Oliveira, Chlorella vulgaris cultivated in hydroponic wastewater. Acta Horticulturae, 2009, 843, p. 203–210.
  • 36. Venckus, P., J. Kostkevičienė, and V. Bendikienė, Green algae Chlorella vulgaris cultivation in municipal wastewater and biomass composition, Journal of Environmental Engineering and Landscape Management, 2017, 25:1, p. 56-63
  • 37. Madkour, Amany et. al., The Differential Efficiency of Chlorella vulgaris and Oscillatoria sp. to Treat the Municipal Wastewater, Journal of Biology, Agriculture and Healthcare, 2017, 7: 22.

Treatment of Wastewater in Antarctic Science Bases Using Polar Microalgae

Year 2024, Volume: 7 Issue: 3, 142 - 148
https://doi.org/10.38001/ijlsb.1537674

Abstract

In recent years, the number of scientific studies in the Antarctic and Arctic regions has increased considerably. While scientific studies allow us to explore the untouched nature of the region and better understand the global climate, they also raise various ecological concerns such as wastewater, air pollution and habitat destruction. This threatens the flora and fauna of the polar regions, negatively affecting biodiversity. It is crucial that we protect the fragile ecosystems of the polar regions through sustainable research practices and international cooperation to prevent pollution, protect habitats and prevent the introduction of invasive species. The Antarctic Treaty and other protocols prohibit the discharge of wastewater into the sea without treatment. For this reason, many research bases in Antarctica have established facilities to treat wastewater. These facilities ensure that wastewater is treated and returned to the sea without harming the environment. However, the wastewater treatment process generates a significant amount of solid waste. As this waste accumulates in the treatment plants, it has to be transported back to the mainland. Antarctica's remoteness and challenging geographical conditions make solid waste transportation logistically difficult and costly. In order to solve these problems, it was aimed to use the algal blooms occurring in Antarctica in the treatment process by cultivating them in wastewater. In the study, Antarctic microalgae were cultivated in artificial wastewater and found that the Antarctic microalgae can be proposed for the treatment of domestic wastewater in Antarctic bases and has a high potential for the proposed activities by having approximately 30% of protein content.

References

  • 1. Evecen, C., Let's Get to Know Antarctica. Tübitak Marmara Research Center, 2020.
  • 2. Broady, P. A., Life on land: Non-aquatic ecosystems. In Exploring the Last Continent: An Introduction to Antarctica, Springer International Publishing, 2016, p. 201-228.
  • 3. Salihoğlu, B., and B. Öztürk, 2021. Climate Change and Its Effects on the Seas of Turkey (B. Salihoğlu & B. Öztürk, Eds.). Turkish Marine Research Foundation.
  • 4. French, D., Sustainable development and the 1991 Madrid Protocol to the 1959 Antarctic Treaty: The primacy of protection in a particularly sensitive environment. Journal of International Wildlife Law and Policy, 1999, 2(3), p. 291-317.
  • 5. Tin, T., et al., Impacts of local human activities on the Antarctic environment. Antarctic Science, 2009. 21(1), p. 3-33.
  • 6. Potter, S. 2003. Approaches to Antarctic solid waste management logistics: past, present, potential (Doctoral dissertation, University of Tasmania).
  • 7. Stark, J. S., et al., Physical, chemical, biological and ecotoxicological properties of wastewater discharged from Davis Station, Antarctica. Cold Regions Science and Technology, 2015, 113, p. 52-62.
  • 8. Üstün, G. E., and A. Tırpancı, Greywater Treatment and Reuse. Uludağ University Journal of The Faculty of Engineering, 2015, 20(2), 119.
  • 9. Oktor, K., and D. Celik, Treatment of wash basin and bathroom greywater with Chlorella variabilis and reusability. Journal of Water Process Engineering, 2019, 31, 100857.
  • 10. Koçer, A. T., et al., Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment. Brazilian Journal of Microbiology, 2021, 52(4), p. 1779-1790.
  • 11. Sert, B., B. İnan, and D. Özçimen, Effect of chemical pre-treatments on bioethanol production from Chlorella minutissima. Acta Chimica Slovenica, 2018, 65(1).
  • 12. Vehapi, M., A. Yilmaz, and D. Özçimen, Antifungal activities of Chlorella vulgaris and Chlorella minutissima microalgae cultivated in Bold Basal medium, wastewater and tree extract water against Aspergillus niger and Fusarium oxysporum. Rom. Biotechnol. Lett, 2018, 1, p. 1-8.
  • 13. Özçimen, D., Ö. M. Gülyurt, and B. İnan, Optimization of biodiesel production from Chlorella protothecoides oil via ultrasound assisted transesterification. Chemical Industry and Chemical Engineering Quarterly, 2017, 23(3), p. 367-375.
  • 14. İnan, B., and D. Özçimen, Preparation and characterization of microalgal oil loaded alginate/poly (vinyl alcohol) electrosprayed nanoparticles. Food and Bioproducts Processing, 2021, 129, p.105-114.
  • 15. Alazaiza, M. Y. D., et al., Sewage water treatment using Chlorella vulgaris microalgae for simultaneous nutrient separation and biomass production. Separations, 2023, 10(4).
  • 16. Wollmann, F., et al., Microalgae wastewater treatment: Biological and technological approaches. In Engineering in Life Sciences, Wiley-VCH Verlag, 2019, 19, 12, p. 860-871.
  • 17. Slompo, N. D. M., et al., Nutrient and pathogen removal from anaerobically treated black water by microalgae. Journal of Environmental Management, 2020, 268, 110693.
  • 18. Silva, D. F. S., et al., Separation of microalgae cultivated in anaerobically digested black water using Moringa Oleifera Lam seeds as coagulant. Journal of Water Process Engineering, 2021, 39, 101738.
  • 19. Kırkıncı, S. F., et al., Antarktika: Yaşam Bilimleri ve Biyoteknoloji Araştırmalarının Gözden Geçirilmesi. International Journal of Life Sciences and Biotechnology, 2021, 4(1), p.158-177.
  • 20. Shrestha, B., et al., Formulation of a Simulated Wastewater Influent Composition for Use in the Research of Technologies for Managing Wastewaters Generated during Manned Long-Term Space Exploration and Other Similar Situations—Literature-Based Composition Development. BioTech, 2023, 12(1), 8.
  • 21. İnan, B., et al., Interactive effects of cold and temperate conditions on growth and biochemical content of Antarctic microalga Chlorella variabilis YTU. ANTARCTIC. 001. Journal of Applied Phycology, 2023, 35(2), p. 625-637.
  • 22. Tarasenko, S., 2008. Wastewater Treatment in Antarctica. GCAS.
  • 23. Dubois, M., K.A., Gilles, J. K., Hamilton, Colorimetric method for determination of sugars and related substances. Analytical chemistry,1956, 28: p. 350–356.
  • 24. Bligh E. G., and W. J., Dyer, A rapid method of total lipid extraction and purification. Canadian journal of biochemistry and physiology, 1959, 37: p. 911–917.
  • 25. Lowry, O. H., et al., Protein measurement with the folin. Journal Biological Chemistry, 1951, 193
  • 26. Liu, Xiaoning et. al., Growth of Chlorella vulgaris and nutrient removal in the wastewater in response to intermittent carbon dioxide, Chemosphere, 2017, 186, p. 977-985.
  • 27. Reyimu, Z., and D., Özçimen, Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. Journal of Cleaner Production, 2017, 150: p. 40–46.
  • 28. Gani, P., et al., Influence of initial cell concentrations on the growth rate and biomass productivity of microalgae in domestic wastewater. Applied Ecology and Environmental Research, 2016, 14(2): p. 399-409.
  • 29. Rani, S., and C.S.P., Ojha, Chlorella sorokiniana for Integrated Wastewater Treatment, Biomass Accumulation and Value-Added Product Estimation under Varying Photoperiod Regimes: A Comparative Study. Journal of Water Process Engineering, 2020, 39, 10188
  • 30. Oliveira, C. Y. B., et. al., Growth of Chlorella vulgaris using wastewater from Nile tilapia (Oreochromis niloticus) farming in a low-salinity biofloc system. Acta Scientiarum. Technology, 2019, 42, e46232.
  • 31. Babaei, A. et. al., Evaluation of Nutrient Removal and Biomass Production Through Mixotrophic,Heterotrophic, and Photoautotrophic Cultivation of Chlorella in Nitrate and Ammonium Wastewater. International Journal of Environmental Research, 2018, 12(2), p.167–178.
  • 32. Zhu, L. et. al., Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 2018, 137, p. 318–325.
  • 33. Miao, M. et. al., Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. International Biodeterioration & Biodegradation, 2016, 113, p. 120–125.
  • 34. Chen, C.-Y. et. al., Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource Technology, 2020, 122814.
  • 35. Bertoldi, F. C., E. Sant’Anna, and J. L. Barcelos-Oliveira, Chlorella vulgaris cultivated in hydroponic wastewater. Acta Horticulturae, 2009, 843, p. 203–210.
  • 36. Venckus, P., J. Kostkevičienė, and V. Bendikienė, Green algae Chlorella vulgaris cultivation in municipal wastewater and biomass composition, Journal of Environmental Engineering and Landscape Management, 2017, 25:1, p. 56-63
  • 37. Madkour, Amany et. al., The Differential Efficiency of Chlorella vulgaris and Oscillatoria sp. to Treat the Municipal Wastewater, Journal of Biology, Agriculture and Healthcare, 2017, 7: 22.
There are 37 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Research Articles
Authors

Deniz Erçetin 0009-0009-1701-6969

Benan İnan 0000-0002-2315-3099

Didem Balkanlı 0000-0003-2483-7617

Publication Date
Submission Date August 23, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 7 Issue: 3

Cite

EndNote Erçetin D, İnan B, Balkanlı D Treatment of Wastewater in Antarctic Science Bases Using Polar Microalgae. International Journal of Life Sciences and Biotechnology 7 3 142–148.



Follow us on social networks  19277 19276 20153  22366