Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 1 Sayı: 2, 67 - 73, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00008

Öz

Kaynakça

  • Allison, D.E., 1988, Geodesic completeness in static space-times, Geom. Dedic., 26, 85-97. google scholar
  • Allison, D.E., 1998, Energy conditions in standard static space-times, Gen. Relativ. Gravit., 20(2), 115-122. google scholar
  • Allison, D.E., Ünal, B., 2003, Geodesic structure of standard static space-times, J. Geom. Phys. 46(2), 193–200. google scholar
  • Besse, A.L., 2007, Einstein Manifolds, Classics in Mathematics, Springer: Berlin, Germany. google scholar
  • Bishop, R. L., O’Neill, B., 1969, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1), 1-49. google scholar
  • Blaga, A.M., Taştan, H.M., 2022, Gradient solitons on doubly warped product manifolds, Rep. Math. Phys., 89(3), 319-333. google scholar
  • Chen, B.Y., 2017, Differential geometry of warped product manifolds and submanifolds, World Scientific. google scholar
  • Chen, B.Y., 2015, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5), 1535–1547. google scholar
  • De, U.C., Shenaway, S., Ünal, B., 2021, 𝜑(Ric)-vector fields on warped product manifolds and applications, Afr. Mat, 32, 1709-1716. google scholar
  • Ehrlich, P.E., 1974, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, P.h.D. Dissertation, SUNNY Stony Brook, New York. google scholar
  • El-Sayied, H. K., Mantica, C. A., Shenawy, S. Syied, N., 2020, Gray’s Decomposition on Doubly Warped Product Manifolds and Applications, Filomat, 34(11), 3767-3776. google scholar
  • Flores, J.L., Sánchez, M., 2000, Geodesic connectedness and conjugate points in GRW spacetimes, J. Geom. Phys., 36(3-4), 285-314. google scholar
  • Gutierrez, M., Olea, B., 2012, Semi-Riemannian manifolds with a doubly warped structure, Rev. Mat. Iberoam., 28(1), 1-24. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2008, 𝜑(Ric)-vector fields in Riemannian spaces, Arch. Math., 44(5), 385–390. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2009, 𝜑(Ric)-vector fields on conformally flat spaces, AIP. Conf. Prof., 1191(1), 98-103. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Conformal mappings of quasi-Einstein manifolds admitting special vector fields, Filomat, 29(3), 525–534. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Generalized quasi-Einstein manifolds admitting special vector fields, Acta Math. Acad. Paedagog. Nyregyhziensis, 31(1), 61–69. google scholar
  • Kırık, B., Özen Zengin, F., 2019, Applications of a special generalized quasi-Einstein manifold, Bull.Iran.Math. Soc., 45, 89–102. google scholar
  • Kobayashi, S., 1995, Transformations groups in differential geometry, Classic in Mathematics, Springer: Berlin, Germany. google scholar
  • O’Neill, B., 1983, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited: London, England. google scholar
  • Sánchez, M., 1998, On the geometry of generalized Robertson–Walker spacetimes: geodesics, Gen. Relativ. Gravit., 30(6), 915-93. google scholar
  • Sánchez, M., 1999, On the geometry of generalized Robertson–Walker space times: curvature and killing fields, J. Geom. Phys., 31(1), 1-15. google scholar
  • Özen Zengin, F., Kırık, B., Conformal mappings of nearly quasi-Einstein manifolds, Miskolc Math. Notes, 14(2), 629–636. google scholar

𝜁 (Ric)-vector fields on doubly warped product manifolds

Yıl 2023, Cilt: 1 Sayı: 2, 67 - 73, 17.12.2023
https://doi.org/10.26650/ijmath.2023.00008

Öz

We investigate 𝜁 (Ric)-vector fields on doubly warped product manifolds. We obtain some results when the vector field is also 𝜁 (Ric) on factor manifolds.We prove that if a vector field is a 𝜁 (Ric)-vector field on a doubly warped product manifold, it is also a 𝜁 (Ric)-vector field on the factor manifolds under certain conditions. Also, we show that a vector field on a doubly warped product manifold can be a 𝜁 (Ric)-vector field with some conditions. Moreover we give two important applications of this concept in the Lorentzian settings, which are the doubly warped product generalized Robertson-Walker space-time and doubly warped product standard static space-time.

Kaynakça

  • Allison, D.E., 1988, Geodesic completeness in static space-times, Geom. Dedic., 26, 85-97. google scholar
  • Allison, D.E., 1998, Energy conditions in standard static space-times, Gen. Relativ. Gravit., 20(2), 115-122. google scholar
  • Allison, D.E., Ünal, B., 2003, Geodesic structure of standard static space-times, J. Geom. Phys. 46(2), 193–200. google scholar
  • Besse, A.L., 2007, Einstein Manifolds, Classics in Mathematics, Springer: Berlin, Germany. google scholar
  • Bishop, R. L., O’Neill, B., 1969, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1), 1-49. google scholar
  • Blaga, A.M., Taştan, H.M., 2022, Gradient solitons on doubly warped product manifolds, Rep. Math. Phys., 89(3), 319-333. google scholar
  • Chen, B.Y., 2017, Differential geometry of warped product manifolds and submanifolds, World Scientific. google scholar
  • Chen, B.Y., 2015, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52(5), 1535–1547. google scholar
  • De, U.C., Shenaway, S., Ünal, B., 2021, 𝜑(Ric)-vector fields on warped product manifolds and applications, Afr. Mat, 32, 1709-1716. google scholar
  • Ehrlich, P.E., 1974, Metric deformations of Ricci and sectional curvature on compact Riemannian manifolds, P.h.D. Dissertation, SUNNY Stony Brook, New York. google scholar
  • El-Sayied, H. K., Mantica, C. A., Shenawy, S. Syied, N., 2020, Gray’s Decomposition on Doubly Warped Product Manifolds and Applications, Filomat, 34(11), 3767-3776. google scholar
  • Flores, J.L., Sánchez, M., 2000, Geodesic connectedness and conjugate points in GRW spacetimes, J. Geom. Phys., 36(3-4), 285-314. google scholar
  • Gutierrez, M., Olea, B., 2012, Semi-Riemannian manifolds with a doubly warped structure, Rev. Mat. Iberoam., 28(1), 1-24. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2008, 𝜑(Ric)-vector fields in Riemannian spaces, Arch. Math., 44(5), 385–390. google scholar
  • Hinterleitner, I., Kiosak, V.A, 2009, 𝜑(Ric)-vector fields on conformally flat spaces, AIP. Conf. Prof., 1191(1), 98-103. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Conformal mappings of quasi-Einstein manifolds admitting special vector fields, Filomat, 29(3), 525–534. google scholar
  • Kırık, B., Özen Zengin, F., 2015, Generalized quasi-Einstein manifolds admitting special vector fields, Acta Math. Acad. Paedagog. Nyregyhziensis, 31(1), 61–69. google scholar
  • Kırık, B., Özen Zengin, F., 2019, Applications of a special generalized quasi-Einstein manifold, Bull.Iran.Math. Soc., 45, 89–102. google scholar
  • Kobayashi, S., 1995, Transformations groups in differential geometry, Classic in Mathematics, Springer: Berlin, Germany. google scholar
  • O’Neill, B., 1983, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Limited: London, England. google scholar
  • Sánchez, M., 1998, On the geometry of generalized Robertson–Walker spacetimes: geodesics, Gen. Relativ. Gravit., 30(6), 915-93. google scholar
  • Sánchez, M., 1999, On the geometry of generalized Robertson–Walker space times: curvature and killing fields, J. Geom. Phys., 31(1), 1-15. google scholar
  • Özen Zengin, F., Kırık, B., Conformal mappings of nearly quasi-Einstein manifolds, Miskolc Math. Notes, 14(2), 629–636. google scholar
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sibel Gerdan Aydın 0000-0001-5278-6066

Moctar Traore 0000-0003-2132-789X

Hakan Mete Taştan 0000-0002-0773-9305

Yayımlanma Tarihi 17 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 1 Sayı: 2

Kaynak Göster

APA Gerdan Aydın, S., Traore, M., & Taştan, H. M. (2023). 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics, 1(2), 67-73. https://doi.org/10.26650/ijmath.2023.00008
AMA Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. Aralık 2023;1(2):67-73. doi:10.26650/ijmath.2023.00008
Chicago Gerdan Aydın, Sibel, Moctar Traore, ve Hakan Mete Taştan. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics 1, sy. 2 (Aralık 2023): 67-73. https://doi.org/10.26650/ijmath.2023.00008.
EndNote Gerdan Aydın S, Traore M, Taştan HM (01 Aralık 2023) 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics 1 2 67–73.
IEEE S. Gerdan Aydın, M. Traore, ve H. M. Taştan, “𝜁 (Ric)-vector fields on doubly warped product manifolds”, Istanbul Journal of Mathematics, c. 1, sy. 2, ss. 67–73, 2023, doi: 10.26650/ijmath.2023.00008.
ISNAD Gerdan Aydın, Sibel vd. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics 1/2 (Aralık 2023), 67-73. https://doi.org/10.26650/ijmath.2023.00008.
JAMA Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. 2023;1:67–73.
MLA Gerdan Aydın, Sibel vd. “𝜁 (Ric)-Vector Fields on Doubly Warped Product Manifolds”. Istanbul Journal of Mathematics, c. 1, sy. 2, 2023, ss. 67-73, doi:10.26650/ijmath.2023.00008.
Vancouver Gerdan Aydın S, Traore M, Taştan HM. 𝜁 (Ric)-vector fields on doubly warped product manifolds. Istanbul Journal of Mathematics. 2023;1(2):67-73.