Adaptive Wind Turbine Management System to Prevent Bird Deaths
Yıl 2025,
Cilt: 9 Sayı: 1, 1 - 7, 31.07.2025
Zeynep Bayraktar
,
Galip Berk
,
Gürkan Tuna
Öz
The goal of this study is to preserve the ecological balance by reducing bird mortality caused by wind turbines. To accomplish this goal, a system has been designed that will colour the turbine blades with distinct coloured paints, identify when bird flocks approach the turbines, and dynamically limit turbine speed. Bird movements are tracked using high-resolution cameras and distance sensors, and the proximity of bird flocks to turbines is determined using an artificial intelligence system. The combined usage of the visual improvement and detection technology results in a significant reduction in bird collisions. According to field experiments, the system performs better in clear weather than in foggy weather. The findings show that the proposed system is an innovative method to improve environmental sustainability in wind energy generation.
Kaynakça
-
[1] M. Ruiz, L. E. Mujica, S. Alférez, L. Acho, C. Tutivén, Y. Vidal, J. Rodelr and F. Pozo, “Wind turbine fault detection and classification by means of image texture analysis,” Mechanical Systems and Signal Processing, vol. 107, pp. 149-167, 2018, doi: 10.1016/j.ymssp.2017.12.035
-
[2] L. Deng, Y. Guo and B. Chai, “Defect Detection on a Wind Turbine Blade Based on Digital Image Processing,” Processes, vol. 9, no. 8, 1452, 2021, doi:10.3390/pr9081452
-
[3] B. K. Sovacool, “Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity,” Energy Policy, vol. 37, no. 6, pp. 2241-2248, 2009, doi: 10.1016/j.enpol.2009.02.011
-
[4] S. R. Loss, T. Will and P. P. Marra, “Estimates of bird collision mortality at wind facilities in the contiguous United States,” Biological Conservation, vol. 168, pp. 201-209, 2013, doi: 10.1016/j.biocon.2013.10.007
-
[5] R. May, T. Nygård, U. Falkdalen, J. Åström, Ø. Hamre and B. G. Stokke, “Paint it black: Efficacy of increased wind-turbine rotor blade visibility to reduce avian fatalities,” Ecology and Evolution, vol. 10, pp. 8927-8935, 2020, doi: doi.org/10.1002/ece3.6592
-
[6] M. Desholm and J. Kahlert, “Avian collision risk at an offshore wind farm,” Ibis, vol. 147, no. 1, pp. 199-208, 2005, doi: 10.1111/j.1474-919X.2005.00460.x
-
[7] A. L. K. Nilsson, S. Molværsmyr, A. Breistøl and G. H. R. Systad, G. H. R., “Estimating mortality of small passerine birds colliding with wind turbines,” Scientific Reports, vol. 13, 21365e, 2023, doi: 10.1038/s41598-023-46909-z
-
[8] K. S. Smallwood, “Estimating Wind Turbine–Caused Bird Mortality,” Journal of Wildlife Management, vol. 71, no. 8, pp. 2781-2791, 2007, doi: 10.2193/2007-006
-
[9] D. Y. Choi, T. W. Wittig and B. M. Kluever, “An evaluation of bird and bat mortality at wind turbines in the Northeastern United States,” PloS one, vol. 15, no. 8, e0238034, 2020, doi: 10.1371/journal.pone.0238034
-
[10] K. S. Smallwood and D. A. Bell, “Effects of Wind Turbine Curtailment on Bird and Bat Fatalities,” Jour. Wild. Mgmt., vol. 84, pp. 685-696, 2020, doi: 10.1002/jwmg.21844
-
[11] C. B. Thaxter, G. M. Buchanan, J. Carr, S. H. M. Butchart, T. Newbold, R. E. Green, J. A. Tobias, W. B. Foden, S. O'Brien and J. W. Pearce-Higgins, “Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment,” Proceedings. Biological sciences, vol. 284, no. 1862, 20170829, 2017, doi: 10.1098/rspb.2017.0829
-
[12] M. Ferrer, A. Alloing, R. Baumbush and V. Morandini, “Significant decline of Griffon Vulture collision mortality in wind farms during 13-year of a selective turbine stopping protocol,” Global Ecology and Conservation, vol. 38, e02203, 2022, doi: 10.1016/j.gecco.2022.e02203
-
[13] J. R. Zimmerling, A. C. Pomeroy, M. V. d'Entremont and C. M. Francis, “Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments,” Avian Conservation and Ecology, vol. 8, no. 2, 10, 2013, doi: 10.5751/ACE-00609-080210
-
[14] JetpackSDK (2024) Jetpack Dev. [Online] Available: https://developer.nvidia.com/embedded/jetpack
-
[15] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” ArXiv, abs/1506.02640, 2016.
-
[16] A. Mamadmurodov, S. Umirzakova, M. Rakhimov, A. Kutlimuratov, Z. Temirov, R. Nasimov, A. Meliboev, A. Abdusalomov and Y. Im Cho, “A Hybrid Deep Learning Model for Early Forest Fire Detection,” Forests, vol. 16, no. 5, 863, 2025, doi: 10.3390/f16050863
-
[17] A. Bochkovskiy, C. Wang and H. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” ArXiv, abs/2004.10934, 2020.
-
[18] Ultralytics. https://www.ultralytics.com/
-
[19] C. Blary, F. Bonadonna, E. Dussauze, S. Potier, A. Besnard and O. Duriez, “Detection of wind turbines rotary motion by birds: A matter of speed and contrast,” Conservation Science and Practice, vol. 5, no. 10, e13022, 2023. doi: 10.1111/csp2.13022
-
[20] R. May, T. Nygård, U. Falkdalen, J. Åström, Ø. Hamre and B. G. Stokke, “Paint it black: Efficacy of increased wind-turbine rotor blade visibility to reduce avian fatalities,” Ecology and Evolution, vol. 10, pp. 8927-8935, 2020, doi: 10.1002/ece3.6592
-
[21] J. Moll et al., “Radar-based Detection of Birds at Wind Turbine Installations: Results from a Field Study,” 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 2020, pp. 285-288, doi: 10.23919/MIKON48703.2020.9253826
Kuş Ölümlerini Önlemek İçin Uyarlanabilir Rüzgar Türbini Yönetim Sistemi
Yıl 2025,
Cilt: 9 Sayı: 1, 1 - 7, 31.07.2025
Zeynep Bayraktar
,
Galip Berk
,
Gürkan Tuna
Öz
Bu çalışmanın amacı, rüzgar türbinlerinin neden olduğu kuş ölümlerini azaltarak ekolojik dengeyi korumaktır. Bu hedefe ulaşmak için, türbin kanatlarını farklı renkli boyalarla boyayacak, kuş sürülerinin türbinlere yaklaştığını tespit edecek ve türbin hızını dinamik olarak sınırlayacak bir sistem tasarlanmıştır. Kuş hareketleri yüksek çözünürlüklü kameralar ve mesafe sensörleri kullanılarak izlenmekte ve kuş sürülerinin türbinlere yakınlığı bir yapay zeka sistemi kullanılarak belirlenmektedir. Görsel iyileştirme ve tespit teknolojisinin birlikte kullanılması, kuş çarpışmalarında önemli bir azalmayla sonuçlanmaktadır. Saha deneylerine göre, sistem sisli havaya göre açık havada daha iyi performans göstermektedir. Bulgular, önerilen sistemin rüzgar enerjisi üretiminde çevresel sürdürülebilirliği iyileştirmek için yenilikçi bir yöntem olduğunu göstermektedir.
Kaynakça
-
[1] M. Ruiz, L. E. Mujica, S. Alférez, L. Acho, C. Tutivén, Y. Vidal, J. Rodelr and F. Pozo, “Wind turbine fault detection and classification by means of image texture analysis,” Mechanical Systems and Signal Processing, vol. 107, pp. 149-167, 2018, doi: 10.1016/j.ymssp.2017.12.035
-
[2] L. Deng, Y. Guo and B. Chai, “Defect Detection on a Wind Turbine Blade Based on Digital Image Processing,” Processes, vol. 9, no. 8, 1452, 2021, doi:10.3390/pr9081452
-
[3] B. K. Sovacool, “Contextualizing avian mortality: A preliminary appraisal of bird and bat fatalities from wind, fossil-fuel, and nuclear electricity,” Energy Policy, vol. 37, no. 6, pp. 2241-2248, 2009, doi: 10.1016/j.enpol.2009.02.011
-
[4] S. R. Loss, T. Will and P. P. Marra, “Estimates of bird collision mortality at wind facilities in the contiguous United States,” Biological Conservation, vol. 168, pp. 201-209, 2013, doi: 10.1016/j.biocon.2013.10.007
-
[5] R. May, T. Nygård, U. Falkdalen, J. Åström, Ø. Hamre and B. G. Stokke, “Paint it black: Efficacy of increased wind-turbine rotor blade visibility to reduce avian fatalities,” Ecology and Evolution, vol. 10, pp. 8927-8935, 2020, doi: doi.org/10.1002/ece3.6592
-
[6] M. Desholm and J. Kahlert, “Avian collision risk at an offshore wind farm,” Ibis, vol. 147, no. 1, pp. 199-208, 2005, doi: 10.1111/j.1474-919X.2005.00460.x
-
[7] A. L. K. Nilsson, S. Molværsmyr, A. Breistøl and G. H. R. Systad, G. H. R., “Estimating mortality of small passerine birds colliding with wind turbines,” Scientific Reports, vol. 13, 21365e, 2023, doi: 10.1038/s41598-023-46909-z
-
[8] K. S. Smallwood, “Estimating Wind Turbine–Caused Bird Mortality,” Journal of Wildlife Management, vol. 71, no. 8, pp. 2781-2791, 2007, doi: 10.2193/2007-006
-
[9] D. Y. Choi, T. W. Wittig and B. M. Kluever, “An evaluation of bird and bat mortality at wind turbines in the Northeastern United States,” PloS one, vol. 15, no. 8, e0238034, 2020, doi: 10.1371/journal.pone.0238034
-
[10] K. S. Smallwood and D. A. Bell, “Effects of Wind Turbine Curtailment on Bird and Bat Fatalities,” Jour. Wild. Mgmt., vol. 84, pp. 685-696, 2020, doi: 10.1002/jwmg.21844
-
[11] C. B. Thaxter, G. M. Buchanan, J. Carr, S. H. M. Butchart, T. Newbold, R. E. Green, J. A. Tobias, W. B. Foden, S. O'Brien and J. W. Pearce-Higgins, “Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment,” Proceedings. Biological sciences, vol. 284, no. 1862, 20170829, 2017, doi: 10.1098/rspb.2017.0829
-
[12] M. Ferrer, A. Alloing, R. Baumbush and V. Morandini, “Significant decline of Griffon Vulture collision mortality in wind farms during 13-year of a selective turbine stopping protocol,” Global Ecology and Conservation, vol. 38, e02203, 2022, doi: 10.1016/j.gecco.2022.e02203
-
[13] J. R. Zimmerling, A. C. Pomeroy, M. V. d'Entremont and C. M. Francis, “Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments,” Avian Conservation and Ecology, vol. 8, no. 2, 10, 2013, doi: 10.5751/ACE-00609-080210
-
[14] JetpackSDK (2024) Jetpack Dev. [Online] Available: https://developer.nvidia.com/embedded/jetpack
-
[15] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” ArXiv, abs/1506.02640, 2016.
-
[16] A. Mamadmurodov, S. Umirzakova, M. Rakhimov, A. Kutlimuratov, Z. Temirov, R. Nasimov, A. Meliboev, A. Abdusalomov and Y. Im Cho, “A Hybrid Deep Learning Model for Early Forest Fire Detection,” Forests, vol. 16, no. 5, 863, 2025, doi: 10.3390/f16050863
-
[17] A. Bochkovskiy, C. Wang and H. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” ArXiv, abs/2004.10934, 2020.
-
[18] Ultralytics. https://www.ultralytics.com/
-
[19] C. Blary, F. Bonadonna, E. Dussauze, S. Potier, A. Besnard and O. Duriez, “Detection of wind turbines rotary motion by birds: A matter of speed and contrast,” Conservation Science and Practice, vol. 5, no. 10, e13022, 2023. doi: 10.1111/csp2.13022
-
[20] R. May, T. Nygård, U. Falkdalen, J. Åström, Ø. Hamre and B. G. Stokke, “Paint it black: Efficacy of increased wind-turbine rotor blade visibility to reduce avian fatalities,” Ecology and Evolution, vol. 10, pp. 8927-8935, 2020, doi: 10.1002/ece3.6592
-
[21] J. Moll et al., “Radar-based Detection of Birds at Wind Turbine Installations: Results from a Field Study,” 2020 23rd International Microwave and Radar Conference (MIKON), Warsaw, Poland, 2020, pp. 285-288, doi: 10.23919/MIKON48703.2020.9253826