Araştırma Makalesi
BibTex RIS Kaynak Göster

Samsun-Atakum Orman Alanlarının Belirlenmesinde Farklı Bitki İndekslerinin Karşılaştırılması

Yıl 2019, Cilt: 3 Sayı: 1, 9 - 13, 04.03.2019

Öz

Hayati açıdan önemli birçok jeokimyasal ve
biyoiklimsel sürece katkısı olması, yabani hayat için yaşam alanı ve besin
kaynağı oluşturması, insanlara doğrudan veya dolaylı olarak sosyoekonomik ürün
ve hizmet sağlaması gibi konularda kritik rol oynayan orman alanlarının
izlenmesi ve zamansal değişimlerinin analizi oldukça önemli bir konudur. Geniş
alan kaplayan orman alanlarının klasik yöntemlerle ölçülmesi ve izlenmesi çoğu
zaman hem maliyetli hem de zaman alıcıdır. Günümüzde, doğal kaynakların
izlenmesi, zamansal değişimlerinin belirlenmesi ve etkin yönetimi amacıyla çok
sayıda uzaktan algılama uydu sistemi geliştirilmiştir. Bu kapsamda, bitki
örtüsü de uydu görüntüleri ile periyodik olarak, etkin, ekonomik ve hızlı bir
şekilde takip edilebilir ve sonuçlar değerlendirilip gerekli tedbirler
alınabilir. Uydu görüntülerinden bitki örtüsünün elde edilmesi için birçok
bitki indeksi algoritması tanımlanmıştır. Bu çalışmada, 08 Eylül 2017 (Path:
175, Row: 31) tarihli Landsat 8 OLI uydu görüntüsü kullanılarak Samsun’un
Atakum ilçesine ait bitki örtüsü incelenmiştir. Bu amaçla NDVI, TVI, CTVI,
TTVI, RVI, NRVI olmak üzere 6 adet eğim tabanlı ve PVI1, PVI2, PVI3, DVI, SAVI,
TSAVI1, TSAVI2, MSAVI1, MSAVI2, WDVI olmak üzere 10 adet mesafe tabanlı bitki
indeksi kullanılmıştır. Toplam 16 bitki indeksinden elde edilen indeks görüntülerinde
eşik değerler uygulanarak orman alanları çıkartılmış ve sonuçlar Samsun Orman
İşletme Müdürlüğü’nden temin edilen yersel ölçmelere dayalı sınırlarla
karşılaştırılarak indekslerin orman alanlarının belirlenmesindeki performansı
karşılaştırılmıştır.

Kaynakça

  • Orman Genel Müdürlüğü, Türkiye Orman Varlığı, 2015.
  • H. Schmidt, A. Karnieli, "Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study" , International Journal of Remote Sensing, vol. 22(17), pp. 3503-3520, 2001.
  • A. Thiam, J. R. Eastman. Chapter Eighteen: Vegetation Indices. [Online] Available:http://teaching.up.edu/env384/IDRISISelvaManual_C18_VegIndices.pdf
  • NASA website. [Online]Available: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/
  • N.G. Silleos, T. K. Alexandridis, I. Z. Gitas, K. Perakis, “Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years”, Geocarto International, vol. 21(4), pp. 21-28, 2006.
  • T. Kavzoğlu, İ. Çölkesen, “Uzaktan Algılama Teknolojileri ve Uygulama Alanları”, Türkiye’de Sürdürülebilir Arazi Yönetimi Çalıştayı, 2011.
  • F. B. Balçık, “Yapay Alan Değişimlerinin Uzaktan Algılama İndeksleri ile Belirlenmesi, İstanbul Örneği”, TMMOB Coğrafi Bilgi Sistemleri Kongresi, 2011.
  • F. Baret, S. Jacquemoud, J. F. Hanocq, “About The Soil Line Concept in Remote Sensing”, Remote Sensing Reviews, vol. 7(1), pp. 65-82, 1993.
  • J. Ko, S. J. Maas, S. Mauget, G. Piccinni, D. Wanjura, "Modeling Water-stressed Cotton Growth Using Within-season Remote Sensing Data", Agronomy Journal, vol. 98, pp. 1600-1609, 2006.
  • M. Mróz, A. Sobieraj, "Comparison of Several Vegetation Indices Calculated on the Basis of a Seasonal SPOT XS Time Series, and Their Suitability For Land Cover and Agricultural Crop Identification", Technical Sciences, vol. 7(7), pp. 29-66, 2004.
  • J. W. Jr . Rouse, R. H. Haas, D. W. Deering, J. A. Schell, J. C. Harlan, “Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation”, Greenbelt, MD, NASA/GSFC Type III Final Report, 1974.
  • D. W. Deering, J. W. Rouse, R. H. Haas, J. A. Schell, “Measuring “Forage Production” of Grazing Units From Landsat MSS Data”, Proceedings of the 10th International Symposium on Remote Sensing of Environment, pp. 1169-1178, 1975.
  • C. Jr. Perry, L. F. Lautenschlager, “Functional Equivalence of Spectral Vegetation Indices”, Remote Sensing and the Environment, vol. 14, pp. 169-182, 1984.
  • A. K. Thiam, Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel: The Case of Southern Mauritania. Doctoral Dissertation, Clark University, Worcester Massachusetts, 1997.
  • A. J. Richardson, C. L. Wiegand, “Distinguishing Vegetation From Soil Background Information”, Photogramnetric Engineering and Remote Sensing, vol. 43(12), pp. 1541-1552, 1977.
  • F. Baret, G. Guyot, “Potentials and Limits of Vegetation Indices for LAI and APAR Assessment”, Remote Sensing and the Environment, vol. 35, pp. 161-173, 1991.
  • D. Walther, S. Shabaani, Large scale monitoring of rangelands vegetation using NOAA/AVHRR LAC data: application to the rainy seasons 1989/90 in northern Kenya, Range Management Handbook of Kenya, Nairobi, 1991.
  • J. Qi, A. Chehbouni, A. R. Huete, Y. H. Kerr, S. Sorooshian, “A Modified Soil Adjusted Vegetation Index”, Remote Sensing and the Environment, vol. 48, pp. 119-126, 1994.
  • A. R, Huete, “A Soil-Adjusted Vegetation Index (SAVI)”, Remote Sensing and the Environment, vol. 25, pp. 53-70, 1988.
  • F. Baret, G. Guyot, D. Major, “TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects on LAI and APAR Estimation”, 12th Canadian Symposium on Remote Sensing and IGARSS’90, 1989.

Comparison of Different Vegetation Indexes for Determination of Forest Areas in Atakum (Samsun, Turkey)

Yıl 2019, Cilt: 3 Sayı: 1, 9 - 13, 04.03.2019

Öz

The monitoring and analyzing of temporal changes of forest areas, which
play a critical role in issues such as contributing to many vitally important
geochemical and bioclimatic processes, providing a habitat and food resource
for wildlife, providing direct or indirect socioeconomic products and services
to people, is a very important issue. Measuring and monitoring of large forest
areas using traditional methods are often costly and time-consuming. Today, a
large number of remote sensing satellite systems have been developed in order
to monitor natural resources, determine their temporal changes and manage them
effectively. In this context, vegetation cover can also be monitored
periodically, effectively, economically and fast with the satellite images and
the necessary measures can be taken by evaluating the results. Many vegetation
index algorithms have been developed for obtaining vegetation cover from
satellite images. In this study, the vegetation cover of Atakum district
(Samsun, Turkey) was investigated by using Landsat 8 OLI satellite image dated
September 08, 2017 (Path: 175, Row: 31). For this purpose, six slope-based
vegetation indexes including NDVI, TVI, CTVI, TTVI, RVI, and NRVI and ten
distance-based vegetation indexes including PVI1, PVI2, PVI3, DVI, SAVI,
TSAVI1, TSAVI2, MSAVI1, MSAVI2, and WDVI were used. Forest areas were extracted
from a total of sixteen index images by applying threshold values and the
performances of the vegetation indexes in the determination of forest areas
were compared by superimposing the index results with ground surveying-based
boundaries obtained from the Samsun Forestry Directorate.

Kaynakça

  • Orman Genel Müdürlüğü, Türkiye Orman Varlığı, 2015.
  • H. Schmidt, A. Karnieli, "Sensitivity of vegetation indices to substrate brightness in hyper-arid environment: the Makhtesh Ramon Crater (Israel) case study" , International Journal of Remote Sensing, vol. 22(17), pp. 3503-3520, 2001.
  • A. Thiam, J. R. Eastman. Chapter Eighteen: Vegetation Indices. [Online] Available:http://teaching.up.edu/env384/IDRISISelvaManual_C18_VegIndices.pdf
  • NASA website. [Online]Available: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/
  • N.G. Silleos, T. K. Alexandridis, I. Z. Gitas, K. Perakis, “Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years”, Geocarto International, vol. 21(4), pp. 21-28, 2006.
  • T. Kavzoğlu, İ. Çölkesen, “Uzaktan Algılama Teknolojileri ve Uygulama Alanları”, Türkiye’de Sürdürülebilir Arazi Yönetimi Çalıştayı, 2011.
  • F. B. Balçık, “Yapay Alan Değişimlerinin Uzaktan Algılama İndeksleri ile Belirlenmesi, İstanbul Örneği”, TMMOB Coğrafi Bilgi Sistemleri Kongresi, 2011.
  • F. Baret, S. Jacquemoud, J. F. Hanocq, “About The Soil Line Concept in Remote Sensing”, Remote Sensing Reviews, vol. 7(1), pp. 65-82, 1993.
  • J. Ko, S. J. Maas, S. Mauget, G. Piccinni, D. Wanjura, "Modeling Water-stressed Cotton Growth Using Within-season Remote Sensing Data", Agronomy Journal, vol. 98, pp. 1600-1609, 2006.
  • M. Mróz, A. Sobieraj, "Comparison of Several Vegetation Indices Calculated on the Basis of a Seasonal SPOT XS Time Series, and Their Suitability For Land Cover and Agricultural Crop Identification", Technical Sciences, vol. 7(7), pp. 29-66, 2004.
  • J. W. Jr . Rouse, R. H. Haas, D. W. Deering, J. A. Schell, J. C. Harlan, “Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation”, Greenbelt, MD, NASA/GSFC Type III Final Report, 1974.
  • D. W. Deering, J. W. Rouse, R. H. Haas, J. A. Schell, “Measuring “Forage Production” of Grazing Units From Landsat MSS Data”, Proceedings of the 10th International Symposium on Remote Sensing of Environment, pp. 1169-1178, 1975.
  • C. Jr. Perry, L. F. Lautenschlager, “Functional Equivalence of Spectral Vegetation Indices”, Remote Sensing and the Environment, vol. 14, pp. 169-182, 1984.
  • A. K. Thiam, Geographic Information Systems and Remote Sensing Methods for Assessing and Monitoring Land Degradation in the Sahel: The Case of Southern Mauritania. Doctoral Dissertation, Clark University, Worcester Massachusetts, 1997.
  • A. J. Richardson, C. L. Wiegand, “Distinguishing Vegetation From Soil Background Information”, Photogramnetric Engineering and Remote Sensing, vol. 43(12), pp. 1541-1552, 1977.
  • F. Baret, G. Guyot, “Potentials and Limits of Vegetation Indices for LAI and APAR Assessment”, Remote Sensing and the Environment, vol. 35, pp. 161-173, 1991.
  • D. Walther, S. Shabaani, Large scale monitoring of rangelands vegetation using NOAA/AVHRR LAC data: application to the rainy seasons 1989/90 in northern Kenya, Range Management Handbook of Kenya, Nairobi, 1991.
  • J. Qi, A. Chehbouni, A. R. Huete, Y. H. Kerr, S. Sorooshian, “A Modified Soil Adjusted Vegetation Index”, Remote Sensing and the Environment, vol. 48, pp. 119-126, 1994.
  • A. R, Huete, “A Soil-Adjusted Vegetation Index (SAVI)”, Remote Sensing and the Environment, vol. 25, pp. 53-70, 1988.
  • F. Baret, G. Guyot, D. Major, “TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects on LAI and APAR Estimation”, 12th Canadian Symposium on Remote Sensing and IGARSS’90, 1989.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İpek Yılmaz

Derya Öztürk

Yayımlanma Tarihi 4 Mart 2019
Gönderilme Tarihi 28 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 1

Kaynak Göster

IEEE İ. Yılmaz ve D. Öztürk, “Samsun-Atakum Orman Alanlarının Belirlenmesinde Farklı Bitki İndekslerinin Karşılaştırılması”, IJMSIT, c. 3, sy. 1, ss. 9–13, 2019.