Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation and Comparative Analysis of Energy Storage Technologies

Yıl 2022, Cilt: 6 Sayı: 2, 134 - 142, 30.12.2022

Öz

Due to the limited reserves of fossil fuels such as oil, coal and natural gas in our country and environmental and social constraints, the tendency towards renewable energy sources has increased. Depending on industrial and technological developments, energy continuity is very important in order to maintain modern life and ensure continuity in production. Storage technologies play a very important role in minimizing the interruptions encountered in energy production in the use of renewable energy sources and in the widespread use of these systems. Energy demand must be sufficiently supplied when it is needed. Fast and reliable response to demand differences that may occur during the day in the amount of energy is possible with energy storage systems. Energy storage technology has great potential to improve electric power systems, contribute to renewable energy production and provide an alternative to petroleum-derived fuels. In this study; chemical, electrical, electrochemical, electrochemical, mechanical and thermal energy storage systems were discussed and information was given about their structures and working principles.

Kaynakça

  • [1] Worldometer, “World Population Projections”, https://www.worldometers.info/world-population/world-population-projections/.
  • [2] ThinkTech (2022). “ThinkTech - Enerji Depolama Teknolojilerindeki Son Gelişmeler”, ThinkTech. https://thinktech.stm.com.tr/enerji-depolama-teknolojilerindeki-son-gelismeler
  • [3] E. Dănilă ve D. D. Lucache, “History of the First Energy Storage Systems”, içinde Paper delivered at the 3rd International Symposium on the History of Electrical Engineering and of Tertiary-Level Engineering Education, 2010, ss. 27-29.
  • [4] F. Faure, “Suspension magne´tique pour volant d’inertie.” The`se de doctorat. Institut National Polytechnique de Grenoble, France; Juin 2003.
  • [5] H. Ibrahim, A. Ilinca, ve J. Perron, “Energy storage systems—Characteristics and comparisons”, Renewable and sustainable energy reviews, c. 12, sy 5, ss. 1221-1250, 2008.
  • [6] M. Esen ve T. Ayhan, “Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials”, Energy Conversion and Management, c. 37, sy 12, ss. 1775-1785, Ara. 1996, doi: 10.1016/0196-8904(96)00035-0.
  • [7] M. Esen, A. Durmuş, ve A. Durmuş, “Geometric design of solar-aided latent heat store depending on various parameters and phase change materials”, Solar Energy, c. 62, sy 1, ss. 19-28, Oca. 1998, doi: 10.1016/S0038-092X(97)00104-7.
  • [8] M. Esen, “Thermal performance of a solar-aided latent heat store used for space heating by heat pump”, Solar Energy, c. 69, sy 1, ss. 15-25, Oca. 2000, doi: 10.1016/S0038-092X(00)00015-3.
  • [9] (2011) IEC White Paper EES | IEC Webstore. https://webstore.iec.ch/publication/22374.
  • [10] Wagner L. Overview of energy storage methods, 〈http://www.moraassociates.com/〉
  • [11] Ö. Erdoğan. Enerji Depolama (http://www.guyad.org/Eklenti/2 41,guyad-enerji-depolama-101pdf.pdf?0)
  • [12] Your Dictionary. “Examples of Chemical Energy in Everyday LIfe”. 〈http://examples.yourdictionary.com/examples-of-chemical-energy.html〉
  • [13] 〈http://www.techconnection.info/Explanation.html〉
  • [14] D. Uner, “Storage of Chemical Energy and Nuclear Materials, Energy storage systems”, ENERGY STORAGE SYSTEMS, c. 2, s. 9.
  • [15] W. Qikun, Z. Changchun, L. Weihua, ve W. Ting, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, International Journal of Hydrogen Energy, c. 27, sy 5, ss. 497-500, 2002.
  • [16] J. O. Bockris ve T. N. Veziroglu, “A Solar-Hydrogen Energy System for Environmental Compatibility”, Environmental Conservation, c. 12, sy 2, ss. 105-118, ed 1985, doi: 10.1017/S0376892900015526.
  • [17] T. N. Veziroglu ve F. Barbir, “Hydrogen: the wonder fuel”, International Journal of Hydrogen Energy, c. 17, sy 6, ss. 391-404, Haz. 1992, doi: 10.1016/0360-3199(92)90183-W.
  • [18] S. Niaz, T. Manzoor, ve A. H. Pandith, “Hydrogen storage: Materials, methods and perspectives”, Renewable and Sustainable Energy Reviews, c. 50, ss. 457-469, 2015.
  • [19] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/hydrogen-storage〉.
  • [20] M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, ve K. Sopian, “Renewable hydrogen economy in Asia–Opportunities and challenges: An overview”, Renewable and Sustainable Energy Reviews, c. 30, ss. 743-757, 2014.
  • [21] D. Teichmann, W. Arlt, ve P. Wasserscheid, “Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy”, International Journal of Hydrogen Energy, c. 37, sy 23, ss. 18118-18132, Ara. 2012, doi: 10.1016/j.ijhydene.2012.08.066.
  • [22] G. Cau, D. Cocco, M. Petrollese, S. Knudsen Kær, ve C. Milan, “Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system”, Energy Conversion and Management, c. 87, ss. 820-831, Kas. 2014, doi: 10.1016/j.enconman.2014.07.078.
  • [23] S. Dutta, “A review on production, storage of hydrogen and its utilization as an energy resource”, Journal of Industrial and Engineering Chemistry, c. 20, sy 4, ss. 1148-1156, Tem. 2014, doi: 10.1016/j.jiec.2013.07.037.
  • [24] S. M. M. Ehteshami ve S. H. Chan, “The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges”, Energy Policy, c. 73, ss. 103-109, Eki. 2014, doi: 10.1016/j.enpol.2014.04.046.
  • [25] J. Nowotny ve T. Veziroglu, “Impact of Hydrogen on the Environment”, Alternative Energy and Ecology (ISJAEE), ss. 16-24, Şub. 2019, doi: 10.15518/isjaee.2019.01-03.016-024.
  • [26] Deneysan Eğitim Cihazları. “Hidrojen Enerjisi” (http:// deneysan.com/Content/images/documents/es-08_59355631.pdf
  • [27] R. Zwart, Energy research center of netherland , “Synthetic Natural Gas (SNG)”, s. 38.
  • [28] Kiehne HA. Battery Technology Handbook, Second ed.. New York, Basel: Marcel Dekker Inc; 2003.
  • [29] L. Chen, R. Nolan, S. Avadhany, S. Professor, ve A. Ghoniem, “Thermodynamic Analysis of Coal to Synthetic Natural Gas Process”, Oca. 2009.
  • [30] L. Wagner, “Overview of Energy Storage Methods”, s. 16, 2007.
  • [31] B. Zakeri ve S. Syri, “Electrical energy storage systems: A comparative life cycle cost analysis”, Renewable and sustainable energy reviews, c. 42, ss. 569-596, 2015.
  • [32] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, ve Y. Ding, “Progress in electrical energy storage system: A critical review”, Progress in natural science, c. 19, sy 3, ss. 291-312, 2009.
  • [33] Kondansatör Nedir, Nasıl Çalışır? - Aydınlatma Portalı. (https://www.aydinlatma.org/kondansator-nedir-nasil-calisir.html)
  • [34] A. Arslan, “Bazı İletken Polimerlerin Süperkapasitör Uygulamaları” Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, 2012.
  • [35] Graphene-Info (2020). “Graphene Supercapacitors: Introduction and News” (https://www.graphene-info.com/graphene-supercapacitors.
  • [36] “10 alternatives to lithium-ion batteries: Which new tech will power the future? » Green Authority”. https://greenauthority.com/10-alternatives-to-lithium-ion-batteries-79/ (erişim 19 Ekim 2022).
  • [37] M. G. Molina, “Dynamic modelling and control design of advanced energy storage for power system applications”, Dynamic Modelling, c. 300, 2010.
  • [38] M. Root, The TAB Battery Book: An In-Depth Guide to Construction, Design, and Use. McGraw Hill Professional, 2010.
  • [39] R. Carnegie, D. Gotham, D. Nderitu, ve P. V. Preckel, “Utility Scale Energy Storage Systems”, s. 95.
  • [40] C. Daniel ve J. O. Besenhard, “Handbook of battery materials. 2. rev. and enl”, 2011.
  • [41] “SRC-TR: Batarya Tipleri”. https://www.egmdss.com/gmdss-courses/mod/page/view.php?id=976 (erişim 20 Ekim 2022).
  • [42] (2022) “Pil tarihi”, Vikipedi. https://tr.wikipedia.org/w/index.php?title=Pil_tarihi&oldid=26987972
  • [43] Ş. Efe ve Z. A. Güngör, “Geçmişten Günümüze Batarya Teknolojisi”, European Journal of Science and Technology, Oca. 2022, doi: 10.31590/ejosat.1048673.
  • [44] J. Zhang, L. Zhang, H. Liu, A. Sun, ve R.-S. Liu, Electrochemical Technologies for Energy Storage and Conversion, 2 Volume Set, c. 1. John Wiley & Sons, 2011.
  • [45] Unbound Solar. “Deep Cycle Battery Info”. https://unboundsolar.com/solar-information/deep-cycle-battery-info (Erişim Tarihi: 14 Ekim 2022)
  • [46] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/fuel-cells〉
  • [47] Fuel Cell & Hydrogen Energy Association. “Fuel Cell Basics” 〈http://www.fchea.org/fuelcells〉
  • [48] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/types-fuel-cells〉
  • [49] PV Education, “Lead Acid Batteries”. https://www.pveducation.org/pvcdrom/ batteries /lead-acid-batteries.
  • [50] Clean Energy Institute, “What is a lithium-ion battery and how does it work?”, https://www.cei.washington.edu/education/science-of-solar/battery-technology/. (Erişim Tarihi: 14 Ekim 2022)
  • [51] K. M. Abraham, “How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?”, ACS Energy Lett., c. 5, sy 11, ss. 3544-3547, Kas. 2020, doi: 10.1021/acsenergylett.0c02181.
  • [52] (2019) Science Direct website. “Nickel Cadmium Battery”, https://www.sciencedirect.com/topics/chemistry/nickel-cadmium-battery.
  • [53] Gray, “5 New Battery Technologies That Will Change the Future”, https:// www.gray.com/insights/5-new-battery-technologies-that-will-change-the-future/. (Erişim Tarihi: 14 Ekim 2022)
  • [54] (2016) Science Direct website. “Microbial Fuel Cell”, https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/microbial-fuel-cell.
  • [55] R. Moore-Coyler; “Samsung solid-state battery breakthrough coulddouble EV range”, Car Magazine, (2020), (11 Mayıs 2020), https://www.carmagazine.co.uk/electric/solid-state-battery-ev/. (erişim 19 Ekim 2022)
  • [56] Y. A. Göğüş, “Mechanical Energy Storage”, ENERGY STORAGE SYSTEMS, c. 1, s. 9.
  • [57] I. Hadjipaschalis, A. Poullikkas, ve V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications”, Renewable and Sustainable Energy Reviews, c. 13, sy 6, ss. 1513-1522, Ağu. 2009, doi: 10.1016/j.rser.2008.09.028.
  • [58] Ü. Ünver, H. Bi̇lgi̇n, ve A. Güven, “Pompaj Depolamali Hidroelektrik Sistemler”, Mühendis ve Makina, c. 56, sy 663, Art. sy 663, Nis. 2015.
  • [59] R.R. Miller, M. Winters. (2009) Energy storage: opportunities for pumped storage: supporting renewable energy Goals. Hydro Review https://www.hydroreview.com/world-regions/energy-storage-opportunities-for-pumped-storage-supporting-renewable-energy-goals/
  • [60] Ö. Çi̇çek ve M. Özdemi̇r, “Örnek Bir Hidroelektrik Santrali İçin Pompaj Depolamalı Hidroelektrik Santrali Tasarımı”, GMBD, c. 7, sy 1, ss. 26-35, Nis. 2021, doi: 10.30855/gmbd.2021.01.04
  • [61] B. Kocaman, “Mikro Şebekeler için Örnek Bir Enerji Yönetimi Uygulaması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 3, sy 1, Haz. 2014, doi: 10.17798/beufen.05193.
  • [62] Energy Storage Association. “Advanced Energy Storage Technologies”. 〈http://energystorage.org/energy-storage/energy-storage-technologies〉
  • [63] M. Lamonica. Compressed air energy storage makes a comeback 2013 〈http://spectrum.ieee.org/energywise/energy/the-smarter-grid/compressed-air-energystorage-makes-a-comeback〉.
  • [64] P. Zhao, L. Gao, J. Wang, ve Y. Dai, “Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines”, Renewable Energy, c. 85, ss. 1164-1177, Oca. 2016, doi: 10.1016/j.renene.2015.07.095.
  • [65] Z. Čarija, L. Kranjčević, V. Banić, ve M. Čavrak, “Numerical analysis of Wells turbine for wave power conversion”, Engineering Review: Me\djunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i gra\djevinarstva, c. 32, sy 3, ss. 141-146, 2012.
  • [66] M. Mutlu, “Sıkıştırılmış Hava ile Enerji Depolama” Doktora Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye, 2015.
  • [67] B. Nitz. (2012) Arothron’s Underwater Compressed Air Storage Could Fill Gaps in the Grid – Green Prophet https://www.greenprophet.com/2012/07/arothrons-underwater-compressed-air/ (erişim 19 Ekim 2022).
  • [68] Compressed air energy storage, Energy Storage Association, 2015 〈http://energystorage.org/compressed-air-energy-storage-caes〉
  • [69] “Enerji Depolama Sistemleri Nelerdir? | Teknoloji Projeleri”, 25 Ocak 2021. https://teknolojiprojeleri.com/teknik/enerji-depolama-sistemleri-nelerdir (erişim 19 Ekim 2022).
  • [70] Fehrenbacher K. 2007. Flywheel Maker Pentadyne Raises $14M. http://gigaom.com/cleantech/flywheel-maker-pentadyne-raises-14m/.
  • [71] L. F. Cabeza, I. Martorell, L. Miró, A. Fernández, ve C. Barreneche, “Introduction to thermal energy storage (TES) systems”, içinde Adv Therm Energy Storage Syst, 2015, ss. 1-28. doi: 10.1533/9781782420965.1.
  • [72] R. Aytaş. Termal Enerji Depolama 〈https://acikders.ankara.edu.tr/pluginfile.php/43740/mod_resource/content/0/Hafta11-Termal%20enerji%20depolama.pdf〉.
  • [73] A. H. Abedin, “A Critical Review of Thermochemical Energy Storage Systems”, TOREJ, c. 4, sy 1, ss. 42-46, Ağu. 2011, doi: 10.2174/1876387101004010042.
  • [74] N. Pfleger, T. Bauer, C. Martin, M. Eck, ve A. Wörner, “Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage”, Beilstein J. Nanotechnol., c. 6, ss. 1487-1497, Tem. 2015, doi: 10.3762/bjnano.6.154.
  • [75] savENRG®. (2022) “Phase Change Technology for temperature-controlled packaging” 〈http://www.rgees.com/technology.php〉.
  • [76] İbrahim D.; M. A. Ezan, “Tüba-Enerji Depolama Teknolojileri Raporu”, Türkiye Bilimler Akademisi, 2020.
  • [77] Energy Education.(https://energyeducation.ca/encyclopedia/Fuel_cell)

Enerji Depolama Teknolojilerinin İncelenmesi ve Karşılaştırmalı Analizi

Yıl 2022, Cilt: 6 Sayı: 2, 134 - 142, 30.12.2022

Öz

Ülkemizde petrol, kömür ve doğalgaz gibi fosil yakıtların rezervlerinin sınırlı olması, çevresel ve sosyal kısıtlamalar nedeniyle yenilenebilir enerji kaynaklarına yönelim artmıştır. Endüstriyel ve teknolojik gelişmelere de bağlı olarak modern hayatın sürdürülebilir olması ve üretimde devamlılığın sağlanması için enerji sürekliliği oldukça önemlidir. Yenilenebilir enerji kaynaklarının kullanımında enerji üretiminde karşılaşılan kesintilerin en aza indirgenmesi ve bu sistemlerin yaygınlaşması için depolama teknolojileri oldukça önemli rol oynamaktadır. Enerji talebinin, ihtiyaç duyulduğu anda yeteri kadar arz edilmesi gerekmektedir. Enerji miktarında gün içerisinde meydana gelebilecek talep farklılıklarına hızlı ve güvenilir olarak yanıt verilmesi enerji depolama sistemleri ile mümkün olmaktadır. Enerji depolama teknolojisi; elektrik güç sistemlerini iyileştirme, yenilenebilir enerji üretimine katkı sağlama ve petrol türevi yakıtlara alternatif sunabilmesinden dolayı büyük potansiyele sahip bir teknolojidir. Bu çalışmada; kimyasal, elektriksel, elektrokimyasal, mekanik ve ısıl enerji depolama sistemleri ele alınarak yapıları ve çalışma prensipleri hakkında bilgi verilmiştir.

Kaynakça

  • [1] Worldometer, “World Population Projections”, https://www.worldometers.info/world-population/world-population-projections/.
  • [2] ThinkTech (2022). “ThinkTech - Enerji Depolama Teknolojilerindeki Son Gelişmeler”, ThinkTech. https://thinktech.stm.com.tr/enerji-depolama-teknolojilerindeki-son-gelismeler
  • [3] E. Dănilă ve D. D. Lucache, “History of the First Energy Storage Systems”, içinde Paper delivered at the 3rd International Symposium on the History of Electrical Engineering and of Tertiary-Level Engineering Education, 2010, ss. 27-29.
  • [4] F. Faure, “Suspension magne´tique pour volant d’inertie.” The`se de doctorat. Institut National Polytechnique de Grenoble, France; Juin 2003.
  • [5] H. Ibrahim, A. Ilinca, ve J. Perron, “Energy storage systems—Characteristics and comparisons”, Renewable and sustainable energy reviews, c. 12, sy 5, ss. 1221-1250, 2008.
  • [6] M. Esen ve T. Ayhan, “Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials”, Energy Conversion and Management, c. 37, sy 12, ss. 1775-1785, Ara. 1996, doi: 10.1016/0196-8904(96)00035-0.
  • [7] M. Esen, A. Durmuş, ve A. Durmuş, “Geometric design of solar-aided latent heat store depending on various parameters and phase change materials”, Solar Energy, c. 62, sy 1, ss. 19-28, Oca. 1998, doi: 10.1016/S0038-092X(97)00104-7.
  • [8] M. Esen, “Thermal performance of a solar-aided latent heat store used for space heating by heat pump”, Solar Energy, c. 69, sy 1, ss. 15-25, Oca. 2000, doi: 10.1016/S0038-092X(00)00015-3.
  • [9] (2011) IEC White Paper EES | IEC Webstore. https://webstore.iec.ch/publication/22374.
  • [10] Wagner L. Overview of energy storage methods, 〈http://www.moraassociates.com/〉
  • [11] Ö. Erdoğan. Enerji Depolama (http://www.guyad.org/Eklenti/2 41,guyad-enerji-depolama-101pdf.pdf?0)
  • [12] Your Dictionary. “Examples of Chemical Energy in Everyday LIfe”. 〈http://examples.yourdictionary.com/examples-of-chemical-energy.html〉
  • [13] 〈http://www.techconnection.info/Explanation.html〉
  • [14] D. Uner, “Storage of Chemical Energy and Nuclear Materials, Energy storage systems”, ENERGY STORAGE SYSTEMS, c. 2, s. 9.
  • [15] W. Qikun, Z. Changchun, L. Weihua, ve W. Ting, “Hydrogen storage by carbon nanotube and their films under ambient pressure”, International Journal of Hydrogen Energy, c. 27, sy 5, ss. 497-500, 2002.
  • [16] J. O. Bockris ve T. N. Veziroglu, “A Solar-Hydrogen Energy System for Environmental Compatibility”, Environmental Conservation, c. 12, sy 2, ss. 105-118, ed 1985, doi: 10.1017/S0376892900015526.
  • [17] T. N. Veziroglu ve F. Barbir, “Hydrogen: the wonder fuel”, International Journal of Hydrogen Energy, c. 17, sy 6, ss. 391-404, Haz. 1992, doi: 10.1016/0360-3199(92)90183-W.
  • [18] S. Niaz, T. Manzoor, ve A. H. Pandith, “Hydrogen storage: Materials, methods and perspectives”, Renewable and Sustainable Energy Reviews, c. 50, ss. 457-469, 2015.
  • [19] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/hydrogen-storage〉.
  • [20] M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, ve K. Sopian, “Renewable hydrogen economy in Asia–Opportunities and challenges: An overview”, Renewable and Sustainable Energy Reviews, c. 30, ss. 743-757, 2014.
  • [21] D. Teichmann, W. Arlt, ve P. Wasserscheid, “Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy”, International Journal of Hydrogen Energy, c. 37, sy 23, ss. 18118-18132, Ara. 2012, doi: 10.1016/j.ijhydene.2012.08.066.
  • [22] G. Cau, D. Cocco, M. Petrollese, S. Knudsen Kær, ve C. Milan, “Energy management strategy based on short-term generation scheduling for a renewable microgrid using a hydrogen storage system”, Energy Conversion and Management, c. 87, ss. 820-831, Kas. 2014, doi: 10.1016/j.enconman.2014.07.078.
  • [23] S. Dutta, “A review on production, storage of hydrogen and its utilization as an energy resource”, Journal of Industrial and Engineering Chemistry, c. 20, sy 4, ss. 1148-1156, Tem. 2014, doi: 10.1016/j.jiec.2013.07.037.
  • [24] S. M. M. Ehteshami ve S. H. Chan, “The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges”, Energy Policy, c. 73, ss. 103-109, Eki. 2014, doi: 10.1016/j.enpol.2014.04.046.
  • [25] J. Nowotny ve T. Veziroglu, “Impact of Hydrogen on the Environment”, Alternative Energy and Ecology (ISJAEE), ss. 16-24, Şub. 2019, doi: 10.15518/isjaee.2019.01-03.016-024.
  • [26] Deneysan Eğitim Cihazları. “Hidrojen Enerjisi” (http:// deneysan.com/Content/images/documents/es-08_59355631.pdf
  • [27] R. Zwart, Energy research center of netherland , “Synthetic Natural Gas (SNG)”, s. 38.
  • [28] Kiehne HA. Battery Technology Handbook, Second ed.. New York, Basel: Marcel Dekker Inc; 2003.
  • [29] L. Chen, R. Nolan, S. Avadhany, S. Professor, ve A. Ghoniem, “Thermodynamic Analysis of Coal to Synthetic Natural Gas Process”, Oca. 2009.
  • [30] L. Wagner, “Overview of Energy Storage Methods”, s. 16, 2007.
  • [31] B. Zakeri ve S. Syri, “Electrical energy storage systems: A comparative life cycle cost analysis”, Renewable and sustainable energy reviews, c. 42, ss. 569-596, 2015.
  • [32] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, ve Y. Ding, “Progress in electrical energy storage system: A critical review”, Progress in natural science, c. 19, sy 3, ss. 291-312, 2009.
  • [33] Kondansatör Nedir, Nasıl Çalışır? - Aydınlatma Portalı. (https://www.aydinlatma.org/kondansator-nedir-nasil-calisir.html)
  • [34] A. Arslan, “Bazı İletken Polimerlerin Süperkapasitör Uygulamaları” Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Eskişehir, 2012.
  • [35] Graphene-Info (2020). “Graphene Supercapacitors: Introduction and News” (https://www.graphene-info.com/graphene-supercapacitors.
  • [36] “10 alternatives to lithium-ion batteries: Which new tech will power the future? » Green Authority”. https://greenauthority.com/10-alternatives-to-lithium-ion-batteries-79/ (erişim 19 Ekim 2022).
  • [37] M. G. Molina, “Dynamic modelling and control design of advanced energy storage for power system applications”, Dynamic Modelling, c. 300, 2010.
  • [38] M. Root, The TAB Battery Book: An In-Depth Guide to Construction, Design, and Use. McGraw Hill Professional, 2010.
  • [39] R. Carnegie, D. Gotham, D. Nderitu, ve P. V. Preckel, “Utility Scale Energy Storage Systems”, s. 95.
  • [40] C. Daniel ve J. O. Besenhard, “Handbook of battery materials. 2. rev. and enl”, 2011.
  • [41] “SRC-TR: Batarya Tipleri”. https://www.egmdss.com/gmdss-courses/mod/page/view.php?id=976 (erişim 20 Ekim 2022).
  • [42] (2022) “Pil tarihi”, Vikipedi. https://tr.wikipedia.org/w/index.php?title=Pil_tarihi&oldid=26987972
  • [43] Ş. Efe ve Z. A. Güngör, “Geçmişten Günümüze Batarya Teknolojisi”, European Journal of Science and Technology, Oca. 2022, doi: 10.31590/ejosat.1048673.
  • [44] J. Zhang, L. Zhang, H. Liu, A. Sun, ve R.-S. Liu, Electrochemical Technologies for Energy Storage and Conversion, 2 Volume Set, c. 1. John Wiley & Sons, 2011.
  • [45] Unbound Solar. “Deep Cycle Battery Info”. https://unboundsolar.com/solar-information/deep-cycle-battery-info (Erişim Tarihi: 14 Ekim 2022)
  • [46] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/fuel-cells〉
  • [47] Fuel Cell & Hydrogen Energy Association. “Fuel Cell Basics” 〈http://www.fchea.org/fuelcells〉
  • [48] Energy Efficiency & Renewable Energy. 〈http://energy.gov/eere/fuelcells/types-fuel-cells〉
  • [49] PV Education, “Lead Acid Batteries”. https://www.pveducation.org/pvcdrom/ batteries /lead-acid-batteries.
  • [50] Clean Energy Institute, “What is a lithium-ion battery and how does it work?”, https://www.cei.washington.edu/education/science-of-solar/battery-technology/. (Erişim Tarihi: 14 Ekim 2022)
  • [51] K. M. Abraham, “How Comparable Are Sodium-Ion Batteries to Lithium-Ion Counterparts?”, ACS Energy Lett., c. 5, sy 11, ss. 3544-3547, Kas. 2020, doi: 10.1021/acsenergylett.0c02181.
  • [52] (2019) Science Direct website. “Nickel Cadmium Battery”, https://www.sciencedirect.com/topics/chemistry/nickel-cadmium-battery.
  • [53] Gray, “5 New Battery Technologies That Will Change the Future”, https:// www.gray.com/insights/5-new-battery-technologies-that-will-change-the-future/. (Erişim Tarihi: 14 Ekim 2022)
  • [54] (2016) Science Direct website. “Microbial Fuel Cell”, https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecularbiology/microbial-fuel-cell.
  • [55] R. Moore-Coyler; “Samsung solid-state battery breakthrough coulddouble EV range”, Car Magazine, (2020), (11 Mayıs 2020), https://www.carmagazine.co.uk/electric/solid-state-battery-ev/. (erişim 19 Ekim 2022)
  • [56] Y. A. Göğüş, “Mechanical Energy Storage”, ENERGY STORAGE SYSTEMS, c. 1, s. 9.
  • [57] I. Hadjipaschalis, A. Poullikkas, ve V. Efthimiou, “Overview of current and future energy storage technologies for electric power applications”, Renewable and Sustainable Energy Reviews, c. 13, sy 6, ss. 1513-1522, Ağu. 2009, doi: 10.1016/j.rser.2008.09.028.
  • [58] Ü. Ünver, H. Bi̇lgi̇n, ve A. Güven, “Pompaj Depolamali Hidroelektrik Sistemler”, Mühendis ve Makina, c. 56, sy 663, Art. sy 663, Nis. 2015.
  • [59] R.R. Miller, M. Winters. (2009) Energy storage: opportunities for pumped storage: supporting renewable energy Goals. Hydro Review https://www.hydroreview.com/world-regions/energy-storage-opportunities-for-pumped-storage-supporting-renewable-energy-goals/
  • [60] Ö. Çi̇çek ve M. Özdemi̇r, “Örnek Bir Hidroelektrik Santrali İçin Pompaj Depolamalı Hidroelektrik Santrali Tasarımı”, GMBD, c. 7, sy 1, ss. 26-35, Nis. 2021, doi: 10.30855/gmbd.2021.01.04
  • [61] B. Kocaman, “Mikro Şebekeler için Örnek Bir Enerji Yönetimi Uygulaması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 3, sy 1, Haz. 2014, doi: 10.17798/beufen.05193.
  • [62] Energy Storage Association. “Advanced Energy Storage Technologies”. 〈http://energystorage.org/energy-storage/energy-storage-technologies〉
  • [63] M. Lamonica. Compressed air energy storage makes a comeback 2013 〈http://spectrum.ieee.org/energywise/energy/the-smarter-grid/compressed-air-energystorage-makes-a-comeback〉.
  • [64] P. Zhao, L. Gao, J. Wang, ve Y. Dai, “Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines”, Renewable Energy, c. 85, ss. 1164-1177, Oca. 2016, doi: 10.1016/j.renene.2015.07.095.
  • [65] Z. Čarija, L. Kranjčević, V. Banić, ve M. Čavrak, “Numerical analysis of Wells turbine for wave power conversion”, Engineering Review: Me\djunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i gra\djevinarstva, c. 32, sy 3, ss. 141-146, 2012.
  • [66] M. Mutlu, “Sıkıştırılmış Hava ile Enerji Depolama” Doktora Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye, 2015.
  • [67] B. Nitz. (2012) Arothron’s Underwater Compressed Air Storage Could Fill Gaps in the Grid – Green Prophet https://www.greenprophet.com/2012/07/arothrons-underwater-compressed-air/ (erişim 19 Ekim 2022).
  • [68] Compressed air energy storage, Energy Storage Association, 2015 〈http://energystorage.org/compressed-air-energy-storage-caes〉
  • [69] “Enerji Depolama Sistemleri Nelerdir? | Teknoloji Projeleri”, 25 Ocak 2021. https://teknolojiprojeleri.com/teknik/enerji-depolama-sistemleri-nelerdir (erişim 19 Ekim 2022).
  • [70] Fehrenbacher K. 2007. Flywheel Maker Pentadyne Raises $14M. http://gigaom.com/cleantech/flywheel-maker-pentadyne-raises-14m/.
  • [71] L. F. Cabeza, I. Martorell, L. Miró, A. Fernández, ve C. Barreneche, “Introduction to thermal energy storage (TES) systems”, içinde Adv Therm Energy Storage Syst, 2015, ss. 1-28. doi: 10.1533/9781782420965.1.
  • [72] R. Aytaş. Termal Enerji Depolama 〈https://acikders.ankara.edu.tr/pluginfile.php/43740/mod_resource/content/0/Hafta11-Termal%20enerji%20depolama.pdf〉.
  • [73] A. H. Abedin, “A Critical Review of Thermochemical Energy Storage Systems”, TOREJ, c. 4, sy 1, ss. 42-46, Ağu. 2011, doi: 10.2174/1876387101004010042.
  • [74] N. Pfleger, T. Bauer, C. Martin, M. Eck, ve A. Wörner, “Thermal energy storage – overview and specific insight into nitrate salts for sensible and latent heat storage”, Beilstein J. Nanotechnol., c. 6, ss. 1487-1497, Tem. 2015, doi: 10.3762/bjnano.6.154.
  • [75] savENRG®. (2022) “Phase Change Technology for temperature-controlled packaging” 〈http://www.rgees.com/technology.php〉.
  • [76] İbrahim D.; M. A. Ezan, “Tüba-Enerji Depolama Teknolojileri Raporu”, Türkiye Bilimler Akademisi, 2020.
  • [77] Energy Education.(https://energyeducation.ca/encyclopedia/Fuel_cell)
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cem Emeksiz 0000-0002-4817-9607

Burak Kara 0000-0002-4453-6515

Yayımlanma Tarihi 30 Aralık 2022
Gönderilme Tarihi 21 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 2

Kaynak Göster

IEEE C. Emeksiz ve B. Kara, “Enerji Depolama Teknolojilerinin İncelenmesi ve Karşılaştırmalı Analizi”, IJMSIT, c. 6, sy. 2, ss. 134–142, 2022.